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A B S T R A C T 

 
      The real-world optimization problems always 

have many conflicting objectives that need to be 

optimized at once. A comprehensive number of 

research studies try to solve such kind of 

problems. Multi-Objectives Evolutionary-

Algorithms using Decomposition (MOEA/D) is 

one of the most powerful algorithms that solves 

both multi and many objective optimization 

problems. The basic idea of such algorithms is to 

convert the complex Multi-Objective 

Optimization Problem (MO-OP) into a set of 

uniobjective subproblems. This conversion is 

performed with the help of the information 

acquired from the neighborhood of each 

subproblem. The algorithm could efficiently 

solve the tradeoffs between both diversity of the 

proposed solutions and the convergence of the 

algorithm. Due to the simplicity and the 

efficiency of the algorithm, different research 

studies investigated the improvement and 

adaptation of MOEA/D. In this paper, a review of 

the different decomposition-based algorithms is 

proposed. The research studies covered in this 

paper is categorized into four groups: weight 

vector generation, scalarization and aggregation 

strategies, the MOEA/D variants and the 

MOEA/D real-world applications. 
                                          

© 2024 Modern Academy Ltd. All rights reserved

 

1. Introduction 

        Finding solutions that optimally fit the objectives for a certain problem; maximization or 

minimization is called an optimization problem. Such kinds of problems always have one or more 

objectives to satisfy. In the actual world, problems that involve conflicting goals or objectives is a 

major challenge. That’s because there hardly exists a single solution that satisfies all the objectives 

at once.  
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In this case, designers must choose between competing objectives as selecting the best value of an 

objective will be at the expense of other objectives. These problems are referred to as Multi-

Objective Optimization Problems (MO-OP).  

 

There is a large number of real-world applications that can be recognized as MO-OP, such as 

distributed network-configuration [1], network-routing, real-time scheduling, financial 

applications [2] , medical and health care decision-making [3], and drugs molecular-structure [4]. 

A MO-OP can be represented as shown by the following equation [5], [6]:  

 

Maximize  𝐹(𝑥) = (𝑓1 (𝑥) , … … 𝑓𝑚(𝑥))𝑇  (1) 

subject to   𝑥 ∈ Ω 

where:  𝑚 refers to the number of objectives, Ω the variable or decision-space, and F: Ω → 𝑅𝑚 is 

the objective-space [6]. 

 

The attainable objective-set is defined as {𝐹(𝑥)| 𝑥 ∈ Ω}. Due to the contradictions between the 

different objectives, the final solution for MO-OP is the set of the whole the non-dominated points 

[6], [7].  

 

If both 𝑢, 𝑣 ∈ 𝑅𝑚,   It can be said that, 𝑢 dominates 𝑣 if  𝑢𝑖 ≥ 𝑣𝑖  for any  𝑖 ∈ {1, … … , 𝑚} and 𝑢𝑗 >

𝑣𝑗  for at least a single index 𝑗 ∈ {1, … … . , 𝑚} [6]. 

A point 𝑥∗ ∈  Ω can be thought of as Pareto-optimal to Eq. (1) if it is not dominated by any other 

point 𝑥 , S.T 𝑥 ∈  Ω. In this case, 𝐹(𝑥∗) is considered as optimal objective-vector. Any Pareto-

optimal point's refinement of any of the objectives always causes regression into at least another 

one. The set containing all these points is referred to as  Pareto-optimal-Set (PS), whereas the set 

containing the entire Pareto-optimal objective vectors is referred to as the Pareto-Front (PF) [7] 

[8]. 

 

The Multi-Objective Optimization (MOO) algorithms are Evolutionary-Algorithms (MOEAs) 

used to find the best obtainable solutions such that the solutions evolve or improve over a set of 

iterations. MOEAs are classified into two types: Pareto-Dominance-based (MOEA-PD) and 

Decomposition-based algorithms (MOEA/D). 

 

Pareto-Dominance-based algorithms (MOEA-PD) generally provide sufficient performance with 

small objective spaces. On the other hand, they become unable to scale well with larger objective 

spaces and they lie into a selection pressure problem. Amongst the MOEA-PD algorithms are the 

Strength Pareto-Evolutionary-Algorithm (SPEA) [9], and Non-dominated-Sorting Genetic-

Algorithm (NSGA2) [10].  

 

MO-OP with high objective spaces where the objectives ≥ 3 are called many-objective-

optimization problems. As mentioned, MOEA-PD fails to deal with such problems, where in this 

case, as the number of objectives increase none of the candidates can be dominant over one 

another. 

 

Zhang & Li  [11] found a solution for such kinds of problems by proposing a different type of 

algorithms that uses decomposition MOEA/D. 
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Transferring the MO-OP into a concurrent collection of uniobjective sub-problems is the basic 

idea behind MOEA/D algorithms. The simplification mechanism used by MOEA/D does not only 

reduce the complexity of the problem at hand, but also resolves the dominance-resistance problems 

of the MOEA-PD algorithms.  

 

The decomposition for such algorithms is performed by aggregation of the weighted objectives 

such that each sub-problem has a different generated weight-vector. The weight values as well as 

the aggregation method used are the factors that affect the algorithm’s performance. Due to the 

good performance shown by MOEA/D, different researchers have investigated the improvements 

of these factors as well as applying the decomposition approach to different real-time application 

areas.  

 

As shown in Figure 1, the MOEA/D research areas lie into four groups: scalarizing-function 

adaptaion, weight vectors generation mechanisms, newly implemented MOEA/D versions, and 

MOEA/D different real-world application areas.  

 

 

 

The following sections of the paper are organized as follows; Section 2 shows the preliminaries of 

the original MOEA/D algorithm. In section 3, the scalarizing functions adaptation mechanisms are 

proposed, whereas in section 4, the weight vectors generation strategies are presented. Section 5 

shows the different versions of the MOEA/D algorithms. In section 6, the different real-world 

application areas are proposed. Finally, section 7 shows the research conclusions. 

 

2.  The preliminaries of the original MOEA/D 

The MOEA-PD handle the MO-OP as a whole without decomposing the problem [5]. In 

MOEA-PD, the solutions’ quality is determined based on the non-domination sorting principle. In 

this case, the solutions are ranked based on their PD. The non-dominated set of solutions are given 

the best rank.  

 

The highest ranked solutions are favored throughout the selection or the update process as they 

lead the search towards convergence. To maintain diversity of solutions, the MOEA-PD 

algorithms apply diversity-promotion measures, such as weighted and crowding distance measures 

to achieve a balanced distribution of PF [12].  

 

As previously mentioned, The MOEA-PD algorithms can efficiently approximate the Pareto Front 

(PF) for problems with low number of objectives. Nevertheless, the performance is significantly 

Figure 1.  MOEA/D research categories 
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affected as a result of the increasing number of objectives. In such a case all the solutions will be 

nondominated to each other [11], [6]. The other problem with MOEA-PD is that it suffers from 

high computational-complexity. 

 

For most MO-OP, covering the whole PF is very time consuming as they always have an infinite 

number of Pareto Optimal (PO) vectors. So, Zhang & Li [11] proposed a newly implemented 

MOEA using Decomposition (MOEA/D). The main idea of decomposition-based MOO 

techniques is to break down the MO-OP into a group of single objective sub problems.  

 

MOEA/D is one of the most promising techniques for dealing with multi- and many-objective 

optimization problems (i.e., problems with more than 3 objectives)  because each sub-problem is 

optimized concurrently and collaboratively using information from its neighboring sub-problems. 

As a result, the complexity of MOEA/D is reduced [11]. 

 

The first step to solve the MO-OP using MOEA/D is to decompose or split the problem defined 

by Eq. (1) into several scalar sub problems and to work on these sub problems concurrently. 

According to  [11], there are many decomposition techniques or SFs; the Weighted-Sum (WS), 

the Penalty Boundary-Intersection (PBI), and the Weighted-Tchebycheff (W-Tch) technique.  

 

The W-Tch will only be considered in this section as it is considered the most effective one. 

The MO-OP of Eq. (1) can be handled as a group of 𝑁 scalar sub problems where, the objective 

function of the 𝑗𝑡ℎ sub problem using the W-Tch Scalarization is given as stated in [11] as:  

 

Minimize   gw_tch(x│λj, z∗) = max
1≤i≤N

{ wi
j
|fi(x)−zi

∗|}   (2) 

subject to x ∈ Ω 

 

Where  z =  (𝑧1
∗, 𝑧2

∗, … … 𝑧𝑁
∗ )𝑇 is the reference-point, 𝑆. 𝑇 𝑧𝑖

∗ = max {𝑓𝑖(𝑥)|𝑥 ∈ Ω} for 𝑖 = 1 → 𝑁. 

For each Pareto-optimal point (i.e., non-dominated solution) 𝑥∗ , there exists a weight vector 𝑤 =

(𝑤1, … . , 𝑤𝑁)𝑇 , such that 𝑤𝑖
𝑗

≥ 0, 𝑎𝑛𝑑 ∑ 𝑤𝑖 = 1𝑁
𝑖=1  for all 𝑖 from 1 to 𝑁 objectives and for all 𝑗 

from 1 to 𝑚 sub-problems. In this case, all the non-dominated solutions found for Eq. (2) are 

considered as Pareto-optimal to Eq. (1). 

 

By changing the weight vector, various Pareto-optimal solutions could be achieved.  So that, 

selecting the appropriate weight vectors is one of the factors that affect the solution quality. For 

each weight vector 𝑤𝑖 there is a neighborhood which is a set of the 𝑇 closest weight vectors in 

{𝑤1, … . , 𝑤𝑚} .   

 

Hence, the neighbourhood of the 𝑖𝑡ℎ sub problem contains every sub problem that has a weight 

vector at distance ≤ 𝑇 from 𝑤𝑖. Figure 2 shows the detailed decomposition-based algorithm 

proposed by Zhang et al. [11]. 
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Figure 2. The original MOEA/D algorithm steps 
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3. Scalarization function adaptation mechanisms 

The Scalarization Function (SF) or aggregation function has a crucial role in MOEA/D 

algorithms. It is responsible for the transformation of the MO-OP into a set of scalar subproblems 

[13], [14]. In addition, the selection of the appropriate scalarization function affects to a high 

degree the search ability of the used algorithm. 

 

The research studies concerning the scalarization function adaptations lie into two categories: 

combining two or more scalarizing functions together into a single algorithm or generation of new 

scalarizing functions that were not previously used in the literature. 

 

In [15] , the simultaneous application of the W-Tch and the WS in a single algorithm had been 

studied. There are two suggested implementation plans. First, there is the multi-grid system. Every 

SF in this approach has a full grid of equally distributed weight vectors, and each SF uses both of 

its equivalent grids at the same time. This design will double the size of the population and the 

actual number of neighbours, allowing the two grids to overlap. In the second plan, there is just 

one grid layout with several SFs. Every SF possesses an incomplete weight vector grid in which 

every function is apportioned to a weight vector in turn. The simplicity of the implementation as 

well as the ability to be expanded and applied to other SFs are the main advantages of the proposed 

schemes. 

 

In [16], Ma et al. proposed a W-Tch decomposition with constrained Lp-norm. In this case, sub-

problems are constructed using direction vectors rather than weight vectors. Whereas in [17] 

Pescador-Rojas & Coello proposed the simultaneous use of a number of different scalarization 

functions proposed as pools of functions. In order to produce uniformly-distributed solutions 

throughout the PF, they proposed combining SFs with similar target directions. The selection 

strategy chooses from a pool the SF that fits each sub population based on the improvement fitness 

rate that is computed for each sub problem at each generation. 

 

Qi et al. [18] presented a novel scalarization function using a series of new reference points. These 

points are derived from a reference point specified by the decision maker in the preference model. 

Based on the developed scalarization function, they developed a user-preference-based algorithm, 

named R-MOEA/D. 

 

Rodríguez & Coello [19] proposed new scalarization functions designed using Grammatical 

Evolution (GE). In this case the benchmark problems used are categorized based on their 

geometrical properties. Then, the used scalarization functions are applied to each problem 

independently. After that, the problems with the same properties are combined and the GE is used 

to generate new scalarization functions among the functions that were in use. In this case, the 

newly generated functions are only suitable to the types of problems they were designed for, and 

their performance reduces with the other types of problems.  

 

Zheng & Wang [20] proposed a new Lp scalarization family based on the Global Replacement 

strategy(GR) called the GLp scalarization. The GLp based subproblem’s direction vector is 

guaranteed to pass through its corresponding preference region, which gurantee that MOEA/D-

GR can always avoid mismatches when using the GLp scalarization for any p ≥ 1. 
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4. Weight vector generation and adaptation 

One of the primary factors influencing the MOEA/D search process, as previously mentioned, 

is the weight assignment mechanism. Identical or non-well distributed weight vectors result in 

weak solutions that cannot cover the entire PF [11], [21].  

There are two types of weight vector generation approaches: systematic and random. In systematic 

generation, the weights are created in a repeating pattern to guarantee evenly distributed vectors 

throughout the PF. 

 

As the systematic weight distribution is only suitable for problems with regular or contineous PFs, 

it becomes unable to handle more complex problems i.e., problems with scattered, degenerated or 

irregular PFs. So, to remedy this problem many research studies have invistigated using adaptive 

weight generation mechanisms. 

 

Jiang Siwei et al. [22]  presented a Pareto-adaptive-weight-vector methodology called (paλ) which 

relies on Mixture-Uniform-Design (MUD). In this case, the weight vectors are modified based on 

the PF shape.  

 

Another adaptive weight generation approach, known as MOEA/D-AWG, was presented in [23]. 

The results verified the efficiency of the proposed adaptively weight generation method as 

compared to MOEA/D alternatives with uniformly generated weight vectors. The suggested 

approach creates the weight vectors related to the geometrical characteristics of the PFs that are 

initially estimated by employing Gaussian process regression. 

 

In [24], Junqueira et al. proposed an algorithm based on decomposition that adapts progressively 

its weight vectors during the evolution process. The algorithm is called Multi-objective 

Evolutionary Algorithm based on Decomposition with Local-Neighborhood Adaptation 

(MOEA/D-LNA).  

 

Recently, Gu et al. [25] presented a new weight adaptive updating algorithm (called MOEA/D-

AWS). Initially, the evolutionary matrix similarity subproblem is utilized to decide when to modify 

the weight vectors. In order to promote population variety, a subspace of weight vectors is created 

and used to partition the objective space. Finally, based on the size of the subspace, partial weights 

are given another chance to be chosen. 

 

On the contrary to the systematic (uniform) generation, the random weight generation create 

weight vectors that are not necessarily similar which in turn provide a more throgh investigation 

to the search-space. However, the problem with randomly generated weights is that there is no 

gurantee to cover the whole PF [26]. So, some research studies have invistigated the use of both 

uniform and random weight generations in order to benefit from their advantages at once. 

 

In [27] Li et al. proposed an improved version of MOEA/D to solve the problems with complex 

and irregular PFs. Two modifications have been taken into account. First, an external population 

is maintained during the search that is controlled by an adaptive-archiving strategy based on 

epsilon-dominance. On the other hand,  some subproblems are optimized using random search 

strategies in case that they are not improved during the search process for a certain number of 

function evaluations. Otherwise, the other subproblems are optimized using systematic weight 

distributions. 
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Farias et al. [28] proposed a Uniformly-Randomly-Adaptive algorithm named as (MOEA/D-

URAW). They used the same adaptation strategy presented in [26] combined with the uniform 

distribution for subproblems generation. In this case, the sub problems are generated based on the 

sparseness of the population. 

 

In [29], the study proposed a new algorithm named MOEA/D-VW, which is derived from the 

original MOEA/D by adaptively altering the subproblems' weight vectors throughout the 

iteration. They construct weight vectors using the uniform random sampling approach first, and 

then they modify the weight vectors by changing the population's direction after each iteration. In 

order to reduce computational complexity and increase population competitiveness, they also offer 

a modified crossover operator. 

 

Omran et al. [30] presented a new hybrid weight generation strategy merging both the uniform and 

random weight generations into a single algorithm. The subproblems are divided into two 

partitions, such that the first partition represents around 80% of the total number of subproblems 

are created using uniform weight generation in order to cover the PF. Whereas, the rest of the 

subproblems are creayed using random weight generation so as to get advantage of each. In this 

case the neighborhood for each subproblem will not be constant during the different iterations 

which improves the experience of each subproblem and enhance both the diversity and 

convergence of the algorithm. 

 

5.  MOEA/D different versions 

Different  variations of the original MOEA/D have been found in the literature. These 

algorithmic versions are divided into two groups. The first one is to apply the decomposition 

principle to other evolutionary algorithms.  For example, MOEA/D-ACO [31], MO-GPSO/D [32], 

and MOEA/DD-CMA [33]. Whereas the other is to adapt the original MOEA/D to handle the more 

complex problems. 

 

Ke et al. [31] suggested applying the decomposition approach to the Ant-Colony-Optimization 

named as MOEA/D-ACO. In this algorithm, they divide the number of ants by the number of 

subproblems, with each ant attempting to solve a single subproblem. Ants are divided into groups, 

and each group focuses on a certain area of the PF. Such that, each ant may have neighbors who 

belong to the same group or to a different one.  

 

Martínez et al. [32] studied the application of Geometric-Particle-Swarm-Optimization (GPSO) 

[34]. The algorithm is designed to solve the discrete optimization problems. The algorithm was 

tested on many objectives problems i.e., problems with more than three objectives. 

 

In [33], Castro et al. combined the Covariance-Matrix-Adaptation MOEA/D-CMA strategy using 

decomposition proposed by  [35] with the MOEA using Decomposition-Dominance MOEA/DD 

proposed by [36]. The new algorithm is called MOEA/DD-CMA. This algorithm was compared 

with MOEA/D-CMA over some problems up to 15 objectives. 

 

As previously mentioned, some algorithms proposed updates to the original MOEA/D in order to 

handle the complex irregular PFs. In [37], Jiang et al. used niching approach in conjunction with 

a Two Phase (TP) strategy called MOEA/D-TPN. In order to determine the form of the PF, the 
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algorithm looks for regions where solutions are concentrated during the first phase. Depending on 

the outcomes of the first phase, the algorithm chooses the subproblem form to be employed in the 

second phase. By directing the mating process with parents in the areas with the least amount of 

population, the niching approach is proposed to prevent duplicate offsprings.  

 

Xu et al. [38] suggested a hierarchical decomposition based MOEA called (MOEA/HD), which 

splits the subproblems into several layers/hierarchies and uses superior directing subproblems to 

modify the direction of search of the lower hierarchy subproblems. 

 

Recently Chen et al. [39]  introduced an innovative solution generation operator for MOEA/D. In 

this paper, they generate plausible candidate solutions by analyzing the movements of solutions 

from previous and current generations. The experimental results demonstrated that the suggested 

approach substantially accelerates the rate of convergence for MOEA/D. 

 

6. MOEA/D applications 

Due to the ability of the MOEA/D different algorithmic versions to solve hundreds of 

benchmark optimization problems, it was applied to many real-world optimization problems.  

 

The most famous real-world applications found in the literature are: 

• Engineering applications: Examples for the decomposition-based engineering 

applications are the sizing of a folded-cascode amplifier [40], reservoir flood-control 

operation [41], Electric-motors design [42], optimal power flow  [43], hybrid energy 

systems [44] and antenna-design [45]. 

• Network applications: Finding the optimal mobile agent routes [46], multicast routing 

with network coding optimization problem [47], Community Detection in Large-Scale 

Complex Networks [48] and [49]. 

• Medical applications: Medical image segmentation [50], Cancer diagnosing, where 

[51] applied MOEA/D for a medical cancer gene expression for 35 datasets.  

• Financial applications: Portfolio optimization [52], [53] and cryptocurrency 

algorithmic-trading optimization [30]. 

• Space and satellite applications: Space craft control-structure design [54], and 

aerospace applications [55], Satellite range scheduling [56], UAV 3-D path planning 

[57], and trajectory planning for parafoil UAVs, structural optimization for space 

trusses [58]. 

 

7. Conclusion  

Decomposition is a simple yet efficient strategy that was previously used for traditional MO-

OPs. Nevertheless, it was not applied to evolutionary based algorithms until Zhang and Li 

proposed their first decomposition-based algorithm MOEA/D.  

 

The concept of MOEA/D is to simplify the MO-OP into a set of scalar subproblems depending on 

the acquired information through the neighboring subproblems. Such that the neighborhoods are 

determined based on the closest weight vectors that are assigned to each subproblem. Two main 

factors affect the performance of this type of algorithms: the weight vectors assignment strategies 

and the scalarization function used. 
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Due to the good performance shown by the MOEA/D algorithm, different research studies 

proposed variant updates to the original algorithms in different areas such as weight generation 

and adaptation, scalarization functions generation, proposing other versions of the original 

MOEA/D and applying the original MOEA/D and its variants to different other application areas. 

This paper proposed a review of the different variants of the MOEA/D found in the literature.  
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