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A B S T R A C T 

 
 

          The Fast Fourier Transform (FFT) is a fundamental signal 

processing technique. FFT implementations with high throughput are 

required by modern higher-speed signal processing and 

communications protocols such as 4G LTE, 5G, the Internet of 

Things (IoT), and so on. Furthermore, the FFT resolution mandated 

by the preceding standards differs depending on the mode of 

operation. As a result, it’s highly desired to own an FFT 

implementation which not just supports the high throughput 

requirement, but additionally expandable to handle any configurable 

N point FFT resolution. This study simulates and implements the 

Parallel 256-point radix-2 Fast Fourier Transform. The Parallel FFT 

technique improves system performance and makes it faster. The 

simulation was carried out in MATLAB (version R2023b), and the 

implementation was carried out in the Virtex 6 XC6VLX240T FPGA 

kit using VHDL codes written in the Xilinx package version 14.7, 

with ModelSim (version SE-64 10.6d) used to present the simulation 

results.     

      

                                         © 2024 Modern Academy Ltd. All rights reserved 

 

1. Introduction 

        In order to minimize the computational complexity of mathematical calculations from a magnitude 

associated with the order O(N2) for Discrete Fourier Transform (DFT) to O(NlogN) arithmetic operations, 

Cooley-FFT Tukey's method first implemented this symmetry in DFT operation [1-5]. FFT is utilized in a 

wide range of technical applications, including radar processing, higher throughput image processing, 

speech-recognition, and Compressed data. In a similar vein, large throughput FFTs are needed for the 

functioning of higher-speed communication protocols such as 4G LTE & LTE-Advanced, 5G 

communication-systems, and the growing Internet of Things (IoT). Furthermore, the FFT resolution needed 

for the execution of these higher-speed applications is affected by multiple methods of operating [6-14]. 

The size of an FFT spans from 64 to 2048 points for 3G, 4G, and WiMAX communication protocols [15- 

17]. In comparison to 4G LTE, the 5G FFT size transmission is predicted to be higher. It's highly desired 

for there to be an adaptable FFT structure that could be resized or modified based on operational needs 

avoiding having to go via the onerous process of redesigning every N-point FFT resolution. In light of 

changing FFT accuracy needs for various modes. The radix-2 butterfly block, suggested by Cooley-Tukey 

[18-22], is the foundation of the fundamental FFT design. Using the symmetric features of the FFT, all 
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standard FFT techniques divide the dimension N-FFT onto two pieces, specifically an odd half with an 

even half, so significantly decrease the total number of multiplications [23-26]. 

 Cooley-Tukey introduced the FFT for the first time in order to simplify the arithmetic, Cooley-Tukey 

took advantage of the symmetry in the DFT. In their work, they subdivided a N-points sequence to N/2 odd 

and even subsequences. The radix 2 approach, which is the simplest fundamental algorithm, has gained 

prominence. For an N-point FFT, log2N stages are needed, with N /2 butterflies in each step [26-29]. The 

FFT algorithms used in numerous earlier articles [30-37] are created automatically by Xilinx cores rather 

than by computer programs; as a result, they cannot be altered or observed in almost Xilinx versions. The 

Xilinx FFT intellectual property (IP) cores can only be used to insert standard specifications; they cannot 

be used to modify specific design specifications. Previous research sought to speed up the FFT process in 

a variety of ways, including replicating the algorithm with some mathematical operations reduced. 

However, when the input size increases, the acceleration advantage reduces [38-41]. The paralleling 

approach enables for any input size to be used. This study presents high acceleration parallel FFT MATLAB 

simulation with real time hardware FPGA implementation to boost system performance and perform faster. 

Section two of the study is titled "Simulation of FFT." FFT Implementation is introduced in Section 3, 

while the Conclusions are presented in Sections 4. 

2. Simulation of FFT  
 

In this part, MATLAB is used to simulate an FFT signal with a size of 256 points (version R2023b). 

In DFT, a discrete-time signal is represented by a series of sinusoidal-functions. The DFT for a complex-

valued discrete-time sequence x(n) of N-point is realized by Equation (1). 

 

                                         𝑋(𝐾) = ∑ 𝑥(𝑛)𝑊𝑁
𝐾𝑛𝑁−1

𝑛=0  , 𝑘 = 0, 1, 2, … , 𝑁.                      (1) 

 

 𝑊𝑁
𝑘𝑛 is the phase factor provided by Equation (2). 

                                           𝑊𝑁
𝐾𝑛 = 𝑒

−𝑗2𝐾𝑛𝜋

𝑁                                                                                               (2)   

The input function x(n) discrete-time domain value in the frequency domain is represented by the 

function X(K). N complex multiplications and (N-1) complex additions are needed for the direct analysis 

of a single-point DFT. As a result, an N-point DFT employs N2 complex-multiplications and N(N.1) 

complex- additions, rendering the computing cost of DFT proportionate to O (N2). The direct calculation 

of the DFT makes computing prohibitively demanding for huge numbers of N-points. FFT is a group of 

algorithms that accelerates DFT calculations by taking advantage of their symmetry. The speed-up given 

by the FFT technique is achieved by reducing the number of complex-additions from N(N-1) in DFT 

methods to Nlog2(N), and the number of complex multiplications from N2 to (N/2) x log2(N). Figure 1 

depicts the four input single frequency signals, whereas Figure 2 depicts the amplitudes of the FFT output 

signals. 
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Fig. 1. The Input Signals. 

 

Fig. 2. The FFT Amplitudes. 

 

3. Implementation of FFT 
 

Various multidimensional indexing mappings for the input and output sequences can be used to 

categorize all FFT approaches. These are based on Equation (2), an N-length DFT transform. In general, it 

is sufficient to study merely the two-factor instance since greater dimensions could be constructed by just 

replacing one of these components iteratively. In order to simplify this description, the Cooley-Tukey FFT 

algorithm will only be presented via the two-dimensional indexed transform. The time-index n is 

transformed by Equation (3), which has the constants A and B ∈ Z, N = N1N2. Equation (4) is obtained by 

applying a different index mapping k for the resultant frequency domain, in which C and D ∈ Z are 

constants. In contrast, for a prime-factor algorithm (PFA), the factors N1 and N2 need to be a coprime, not 

primes in and of themselves. This is important to note since the Cooley-Tukey method can actually create 

FFTs through two-factors, N = N1N2, whose are coprime.  
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                         𝑛 = 𝐴𝑛1 + 𝐵𝑛2 𝑚𝑜𝑑 𝑁  {
0 ≤ 𝑛1 ≤ 𝑁1 − 1
0 ≤ 𝑛2 ≤ 𝑁2 − 1

                        (3) 

                

                        𝑘 = 𝐶𝑘1 + 𝐷𝑘2 𝑚𝑜𝑑 𝑁   {
0 ≤ 𝑘1 ≤ 𝑁1 − 1
0 ≤ 𝑘2 ≤ 𝑁2 − 1

                                 (4) 

 

Any factorization of N is conceivable, hence the Cooley Tukey FFT is the most adaptable of all the 

FFT algorithms. The Cooley Tukey FFTs are the most popular, with transform length N being a power of 

a basis r. These algorithms are frequently also known as radix r algorithms. The index mapping proposed 

by Cooley Tukey is the most basic. The mapping illustrated below is based on Equation (3) and assumes 

that A = N2 and B = 1, as in Equation (5). According to the range that n1 and n2 are valid for, the modulo 

reduction indicated by Equation (3) does not need to be explicitly computed. Selecting C = 1 & D = N1 

yields the subsequent mapping for the inverse mapping from Equation (4) Cooley and Tukey to Equation 

(6). In this case, omitting the modulo computation is also an option. Assuming that n and k have now been 

substituted for the proper values in 𝑊𝑁
𝑘𝑛 by Equations (5) and (6), find Equation (7). Considering that since 

W has order N = N1N2, it concludes that 𝑊𝑁
𝑁1 = 𝑊𝑁2 and 𝑊𝑁

𝑁2 = 𝑊𝑁1, which simplifies the Equation (7) 

to Equation (8). As a result, in the DFT Equations (9) and (10), if now replaces Equation (2) with Equation 

(8). 

 

                                     𝑛 = 𝑁2𝑛1 + 𝑛2      {
0 ≤ 𝑛1 ≤ 𝑁1 − 1
0 ≤ 𝑛2 ≤ 𝑁2 − 1

                               (5) 

                          

                                    𝑘 = 𝑘1 + 𝑁1𝑘2      {
0 ≤ 𝑘1 ≤ 𝑁1 − 1
0 ≤ 𝑘2 ≤ 𝑁2 − 1

                                      (6) 

 

                                    𝑊𝑁
𝑛𝑘 =   𝑊𝑁

𝑁2
𝑛1𝑘1+𝑁1𝑁2𝑛1𝑘2+𝑛2𝑘1+𝑁1𝑛2𝑘2

                               (7) 

 

                                        𝑊𝑁
𝑛𝑘 = 𝑊𝑁1

𝑛1𝑘1𝑊𝑁
𝑛2𝑘1𝑊𝑁2

𝑛2𝑘2                                                                 (8) 

 

                             𝑋[𝑘1, 𝑘2] = ∑ 𝑊𝑁2

𝑛2𝑘2𝑁2−1
𝑛2=0 (𝑊𝑁

𝑛2𝑘1 ∑ 𝑥[𝑛1, 𝑛2]𝑊𝑁1

𝑛1𝑘1𝑁1−1
𝑛1=0

)                          (9) 
𝑁1 − 𝑝𝑜𝑖𝑛𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 

𝑥̅[𝑛2, 𝑘1] 

                                              = ∑ 𝑊𝑁2

𝑛2𝑘2𝑁2−1
𝑛2=0 𝑥̅[𝑛2, 𝑘1]                                                                (10) 

𝑁2 − 𝑝𝑜𝑖𝑛𝑡 𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 

 

The Cooley-Tukey approach differentiates itself from previous FFT algorithms by the ability to choose 

the factors for N freely. As a result, a radix r method with N =  rS is feasible. The most widely used 

approaches include those having a base of r = 2 that don't include any multiplications. For instance, in 

Equations (11) and (12), the following index mapping appears with r = 2 and S phases. 
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                                          𝑛 = 2𝑆−1𝑛1 + ⋯ + 2𝑛𝑆−1 + 𝑛𝑆                                              (11) 

 

                                           𝑘 = 𝑘1 + 2𝑘2 + ⋯ + 2𝑆−1𝑘𝑆                                                                (12) 

 

With S > 2, the two-point DFT is commonly represented by a butterfly in the signal flow graph, as seen 

in Figure 3 for an eight-point transform. The representation of the signal's path graph is now reduced by 

taking use of the reality that all incoming arrows at a node are combined, and the constants used for 

coefficient multipliers are represented by the value of a factor with an arrow. In the radix r technique with 

logr(N) steps, a similar form of the twiddle factor emerges for each group. The signal's flow diagram in 

Figure 3 indicates that because the data are no longer needed for the future computations, the calculation 

could be performed situated, which means that the storage region with a butterfly can be rewritten. For the 

reason that the twiddle factor only applies to every second arrow, log2(N) N/2 represents the total quantity 

of twiddle factor multipliers in the radix 2 transformation. The method shown in Figure 3 is known as a 

decimation in frequency (DIF) approach because it begins by splitting originally created DFT to smaller 

DFTs in the frequency domain. Whereas the numerical index of values for frequency is in slightly inverted 

order, the input values are generally in natural order. Table 1 displays the typical values for the DIF radix 

2 approach. 

 

 

Fig. 3. Length-8 Algorithm for Radix-2 Decimation in Frequency. 
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Table 1. Frequency Decimation Using Radix-2 FFT. 

 

 

 

 
 

 

3.1 FFT Radix 2 Implementation 

 

This part implements the Cooley Tukey Length 256 FFT approach by writing VHDL code with the 

Xilinx package version 14.7 and exhibiting ModelSim simulation results. The radix 2 FFT could be 

effectively executed by the butterfly processing that has a sophisticated multiplier to determine the twiddle 

factors as well as the butterfly itself. A radix 2 butterfly processing unit is made up of a complex adder, A 

complex subtractor and a complex multiplier are used for the twiddle factors. To obtain the complex 

multiplies utilizing the twiddle factor, the four real multipliers and two add-subtract procedures are typically 

employed. Even so, because one operand is precomputed, it is also feasible to construct a complex 

multiplication using just three real multipliers and three addition-subtraction actions. The approach includes 

of three multiplications, two subtractions, and one addition. When constructing a full-size FFT, all of the 

data is merged and constructed in accordance with the strategy described in Table 1. Following that, the 

code is written to update the butterfly data and increase the number of dual nodes, twiddle factors, and 

group sizes. The FFT RTL Schematic design is shown in Figure 4. The results of the ModelSim simulation 

start for the tri-angular input values x(n) = [20, 40, 60, 80, 100, 120, 140, 160, 0, 0...] are shown in Figure 

5. The first eight numbers are the only ones that have nonzero values. The following can be used to construct 

the test sequence in MatLab:[ Xz= [(1:8)*20, zeros (1,248)]; and Yn=fft(Xz); ]. 

First, start by forcing the inputs (valid and reset) with ones, then force them with zeroes to load the 

values into the register as indicated by xr_out and xi_out (the real and imaginary first 8 eight register files). 

Figure 6 shows how the FFT values are shown on the output ports as soon as the reverse state is changed 

to forward. To show FFT values at the output ports fftr & ffti (the real and imaginary output values), setting 

the fft_valid flag to one at the same time. The test data presented in Figure 6 corresponds to the expected 

values from the MATLAB simulation shown in Figure 7. 
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720 714 698 671 634 587 532 471 403 ... (real). 

 

0 -82 -159 -260 -313 -380 -439 -490 -532 ... (imag). 

 

 
 

 

 

 

Fig. 4.  RTL Schematic diagram. 
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(a) 

 

(b) 

Fig. 5.  The FFT ModelSim Simulation (Start then load of the input frame), (a) xr_out and xi_out (the real and imaginary first 

eight register files); (b) Start and load states. 

 

 

(a) 
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(b) 

Fig. 6.  FFT ModelSim Simulation in the reverse state, (a) ports fftr and ffti (the real and imaginary output values); (b) reverse 

state changes to forward. 

 

Fig. 7.  Matlab Simulation for the Triangular Input Test Sequence. 

 

3.2 FPGA Utilization 
 

In this part, the Virtex 6 (XC6VLX240T) FPGA kit is used for the implementation. Figure 8 depicts 

the FPGA kit in use. Eight embedded multipliers and about 34,340 logic elements (LEs) are used in the 

design, which has a registered performance of F(max)=31.12MHz using the Time Quest slow modelling 

(85C). The utilized (LEs) in The VHDL design is going to be decreased for an optimizing objective area 

and cosine and sine LUTs, it will then be synthesized as embedded Memory Blocks (M9K) blocks. The 

LEs generated from the VHDL LUTs are designed to be fast. The design goals and strategies part of the 

Xilinx ISE package version 14.7 were used to develop the area optimization strategy. Table 2 shows the 

FPGA consumption when the area reduction design aim is used. 
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Fig. 8.  FPGA Kit for Virtex 6 (XC6VLX240T). 

 

Table 2. The Virtex 6 System Utilization with the Area Reduction Design Objective. 

 

 

3.3 Parallel FFT 
 

This section provides a parallel FFT design that is appropriate to work with these FPGA 

implementations. It is made up for numerous parallel/pipelines and the front-end butterfly-shaped circuit 

for refining and disseminating incoming data. The FFT in Figure 9 was developed in the fixed-point and 

blocks floating-point models employing by Schematic creator constructed with VHDL codes, Subsequently 

the simulation and evaluated on the Virtex 6 version XC6VLX240T. The Radix-22 technique is used by the 

Schematic generator for parallel FFT pipelines. Table 3 exhibits the Quad FFT system's Virtex 6 FPGA 

resource area consumption. While comparing quad utilization to single usage in Table 2, it is apparent that 

the quad technique employs more kit logic elements, increasing the system's complexity. Even though the 

Quad approach takes additional FPGA resources, it still makes use of a modest Virtex 6 resource block. 

According to Table 3, the number of slice registers and LUTs used is 7% and 12%, respectively. 

Remarkably, the quad methodology enhanced the percentage of completely LUT-FF pairs (utilization 

effectiveness) from 34% in the single method to 56%.   
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Fig. 9.  1024 point Quad Pipeline Radix 22 FFT. 

 

Table 3. The Virtex 6 Quad System Area Utilization. 

 

 

Table 4. FFT Fixed points on the XC6VLX240T. 

 

 

The outcomes of single and pipeline implementations are shown in Table 4. The table solely contains 

FFT computations with fixed-points. The throughput of these FFTs can be calculated in samples per second 

by multiply the clock value by the total quantity of pipes. A table evidently indicates the nature of the 

quadruple FFT pipeline has one-fourth the transforming time of a single-pipeline FFT while being only two 

to three times as large. The throughput increases by around four times as a result of the parallel concept, 

which sends four parallel blocks of data (1024 points) in the quad method instead of a single method (256 

data points), and the delay amount reduces due to the pipeline method being used. The pipeline processing 

concept aims to reduce processing time by reducing the number of clocks consumed by the entire system, 

as each new clock has a new FFT process that will be started and another one will be finished, whereas in 

the normal single method, the FFT process does not begin until the previous FFT process is completed. 
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4. Conclusion 

 

The requirement for FFT to demonstrate spectrum analysis is greater. FFT is necessary for a variety of 

technical applications such as radar processing, speech recognition, data compression, and picture and audio 

processing. High throughput FFTs are additionally necessary for the functioning of high-speed 

communication protocols involving 4G LTE and LTE-Advanced, 5G communication systems, and the 

developing Internet and IoT. Furthermore, different modes of operation have distinct requirements for the 

FFT resolution required to achieve these high-speed applications. The Fast Fourier Transform (FFT) 256-

point radix 2 single and parallel (Quad pipeline) is simulated and implemented in this article. The simulation 

was carried out using MATLAB (version R2023b), and the implementation was carried out using the Virtex 

6 XC6VLX240T FPGA kit by writing VHDL codes with the Xilinx package version 14.7 and demonstrate 

the simulation results in ModelSim (version SE-64 10.6d). The findings of the MATLAB simulation are 

identical to the results of the Modelsim simulation. The system exhibits good resource use due to the design 

goal of reducing area and adequate computation performance. The design goal of area reduction reduces 

system usage by 17.31%. This research's simulation and implementation outcomes demonstrated that it was 

successful in accomplishing its purpose. The system makes effective use of resources while maintaining an 

acceptable computation speed. Low order radix methods, like for instance radix 2, necessitate difficult 

recursive decompositions for higher N FFT points processing, resulting in a substantially greater number 

of phases, or stages. Consequently, they are incapable of meeting the throughput requirements for 

applications with high speeds. For that, parallel processing and the pipeline are employed so as to reduce 

the amount of time consumed and boost the system throughput. Clearly, such a parallel pipelines technique 

Could give rise to exceedingly as large throughputs, which are only limited by the available amount of chip 

resources. It additionally enables the trade-off between chip areas and improving throughput. Attempting 

to use fewer hardware resources would be another goal. The complexity of the system will thereafter 

decline. 
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