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ABSTRACT  
 
Nowadays, various wireless communication sensors, detectors and 

controllers (such as low-end IoT) are used all over the world. They 

are vulnerable to the threat of hackers and attackers. Such these 

attacks could lead to great danger to buildings, factories, or even 

lives. For this reason, multi-level data encryption is highly required. 

But it is difficult to run a complex encryption algorithm on these 

embedded systems because they have limited size, power, memory, 

and processor. Therefore, light block ciphers (LBC) are the best 

solution for this case. 

In this paper, a module capable of performing fast dynamic 

symmetric LBC (FDSLBC) will be designed based on the concept of 

dynamic data shuffling and exchange. 

Moreover, a modification proposal within a microcontroller family 

by this new module. This FDSLBC module is designed by VHDL to 

be controlled by various proposed cipher Vector Instructions (VIs). 

Each one of this VI capable to carry out a complete block cipher 

protocol during only one clock pulse. So, security system designers 

can use combinations of these VIs to create fast, robust, and dynamic 

systems in what is called cryptographic-instructions agility. 
 

© 2022 Modern Academy Ltd. All rights reserved  
 

 

1. Introduction 

Recently, many companies and factories are used the industrial IOT wireless sensors in their control and 

monitoring systems (like Vibration, Temperature, Proximity, Frequency meter, Thermocouple, Pressure, AC 

Voltage, Air Quality Sensors)  

Moreover, many peoples are used wireless sensors in their building (like Temperature, Water Detection, 

Humidity, Doors Open/Close Detection and Alerts). Moreover, all of them are used different types of cameras. 

Further, they are used different IOT wireless controllers. 

All these IoT devices must be safe from data hackers. Therefore, system developers face great challenges to 

prevent their data from being decrypted and cracked [1]. Developers try to find powerful encryption algorithms 

but any complex algorithm needs complex mathematical formulas. However, the limited computational circuit in 

these IoT devices is not sufficient to solve complex algorithms rapidly. 

The researchers have tried to solve this problem through three possible directions.  The first is constructing IOT 

systems with lightweight ciphers through optimizing several factors in their design characteristics [2][3][4]. 

The second one is using compact level of the popular block ciphers like AES-128 [5] and ARIA [6].  

The third, is implementing the lightweight block ciphers using either VLSI tools or the FPGA tools. Many VLSI 

developers modified many protocols of the light weight block cipher (such as DESL, DESXL. CURUPIRA-1, 

CURUPIRA-2, PUFFIN, XTEA and PRESENT) [7]. 

On other hand, many VHDL and FPGA developers modified many light weight cipher protocols such as crypto-

processor design[8] and SEED block cipher [9]. 
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Also, many researchers have modified conventional µCs to intellectual propriety (IP) FPGA-cores using the 

VHDL[10]. They modified the microarchitecture (µArch) to improve their performances like the modifying of the 

conventional µCs-8051[11][12][13]. 

Like many FPGA developers and researchers, a block cipher will be implemented inside a microcontroller using 

the VHDL tools as will be explained later in the following sections. 

Therefore, our challenge (in this research) is designing a module to perform multiple block cipher protocols with 

very high speed of processing (few clock pulses). Besides, the major challenge is to match this module within an 

up-to-date microcontroller (µC) family. According to this context,  one of the most famous families of µCs called 

AVR was selected to further our idea. 

Today, the Atmel-AVR family is one of the most famous and fastest µCs. It contains two-stages instruction 

pipeline (fetching & execution). Each pipeline's stage needs one clock pulse to perform its operation. Moreover, it 

can execute most of its instructions in one clock pulse. Its instruction-set contains about 133 RISC instructions. 

Each one has a 16-bit machine op-code.  

From our survey, it was found that no AVR-instruction has been assigned to the last machine code 'FFFFh'. It was 

left as a reserved op-code as shown in the table (1). This reserved op-code will be the motivation factor (in this 

research) to support the AVR by new cryptographic-instructions.  

 

Table (1) the last rows in the AVR's ISA 

 

          AVR instructions 

1 1 1 1 1 0 S ddddd 0 bbb BLD/BST  

1 1 1 1 1 1 B ddddd 0 bbb SBRC/SBRS 

1 1 1 1 1 X X ddddd 1 bbb Reserved 
X… undefined bits 

 

 

The traditional AVR is Harvard µArch type has two separate buses.  The first bus relates to data memory while 

the other relates to program memory[14].  

The traditional AVR instruction-path has width equal 16-bit to transfer the op-codes from the AVR's program 

memory to the AVR's instruction decoder (ID). Besides, the traditional data-path has width 8-lines to carry the 

temporary data (byte formats) among the ALU, the SRAM and the internal AVR modules. The most members of 

the AVR family have common internal SRAM characteristics. It contains 32 general-purpose-registers besides 

I/O registers and the extended I/O registers as shown in the figure (1) [15]. 

 

 

 
Figure (1) the organization of the AVR's SRAM 

 

The idea and the work in this paper are organized in four sections. The first section illustrates how to modify the 

conventional μArch of the μC AVR to make interfacing between the proposed module (FDSLBC) and different 

traditional modules inside the μC. The second section is clarifying the interfacing between the FDSLBC and the 

SRAM inside the AVR. The third section is exposing the suggested VIs and their block-cipher protocols besides 

their VHDL code-samples. The fourth section demonstrates the modification behaviors by running a scenario (for 

encryption and decryption) includes all associated vector instructions (VIs). 
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2. Modifying the microarchitecture of the AVR 

As mentioned earlier, the goal in this paper is to take advantage of the “FFFFh” reserved opcode to 

supplement the AVR with additional instructions to carry out the LBC directly. But this single reserved op-

code can’t be enough to control several operations in the proposed module FDSLBC. The proposed module 

needs a set of op-codes to select multiple cryptographic modes. Therefore, the idea of duplication of the 

instruction set for 8051 was quoted [9, 10, 11].  

Therefore, will modify the AVR by adding instruction switch called Instruction-Toggling-Switch (ITS) as 

shown in the figure (2). The dashed lines represent the added units.  

When the ITS receives the machine code “FFFFh” (at any time), the next opcodes will be switched and 

transmitted to FDSLBC. Farther, if the ITS receives the code "FFFFh" again, it reverts back to its 

conventional path and transfer the subsequent op-codes to the conventional instruction decoder (ID) of the 

AVR, and so on.  

Therefore, the added ITS has a single input bus (16-lines) from the AVR's program memory, while it has two 

output buses (each one 16-lines). The first bus to transfer the op-codes to the traditional ID and the second to 

transfer the op-codes to "FDSLBC".  By default (when resetting the AVR), the ITS will be connected to the 

traditional ID.  

 

 

 
Figure (2) The additional ITS and FDSLBC in the AVR 

 

The FDSLBC must interact with the two conventional AVR's memories (program and data memories) 

through two buses.  The first bus to transfer the cipher keys, plain and ciphered data between the FDSLBC 

and the AVR’ SRAM. The second bus (op-code path) for delivering the additional op-codes from the 

program memory to the FDSLBC. 

Since the AVR instruction-path has been modified (by ITS), the data paths will be modified too. 

The FDSLBC is supplemented with register-file with sixteen byte-locations to store either plain or ciphered 

bytes. Using the conventional AVR data bus (8-bit) to transfer data (byte by byte) is not the optimum 

solution. Therefore, in order to speed-up data transfer to/from the FDSLBC, as well as reducing the SRAM's 

access time, the register-file (in FDSLBC) must be connected directly with its corresponding SRAM 

locations via dual data buses. Altogether, the FDSLBC needs three groups of buses to interface with the 

SRAM as shown in the figure (3).  
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Figure (3) The interfacing between the FDSLBC and the AVR's SRAM 

 

The first bus-group consists of 4 buses (Key_R1, Key_R2, Key_R3 and Key_R4) to transfer the proposed 

block cipher keys (each one 8-bit) from SRAM locations (R1, R2, R3 and R4) respectively to the FDSLBC.   

The second bus-group called "Plain-data Bus" (includes 128 lines) to transfer sixteen plain bytes from the 

SRAM location into 4X4 matrix inside the FDSLBC. The third bus-group called "Ciphered-data Bus" (128 

lines) carries sixteen ciphered bytes from the 4X4 matrix of FDSLBC to their corresponding SRAM's 

locations. All details of the FDSLBC operations and their VIs will be carefully explained later in the next 

sections. 

 

3. Transferring and arranging data in the FDSLBC  

As mentioned before in the last section, the FDSLBC contains 4X4 matrix as register-file (an array of 

sixteen 8-bit registers). Each cell of this matrix represented by one of 8-bit register. All 16 cells are 

connected concurrently with 16 locations in the SRAM. A sixteen SRAM locations is selected to be far from 

the special addresses (0000h to 00FFh) of the AVR. The 16 selected RAM locations will be the addresses 

from "0100h" to "010Fh". Each register of them will be connected directly with its corresponding SRAM 

location via two buses (read and write buses) as shown in the figure (5).   

For instance, the RAM location ($0100h) has dual 8-bit buses "i_bus100" & "O_bus100" connected to the 

1st cell (𝐸11) of the matrix as shown in the figure (4). Moreover, the last location ($010Fh) also has two 

buses "i_bus10F" & "O_bus10F" linked with the 16th cell (𝐸44).  

As resultant, this modification allows data blocks (plain-data) to be transferred from the particular RAM 

locations ($0100: $010F) to FDSLBC matrix simultaneously. Furthermore, it allows data blocks (ciphered-

data) to be stored from FDSLBC to its RAM locations via the cipher-bus concurrently.   

 

 
Figure (4) loading/retrieving 4x4 matrix from/to SRAM locations 
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Figure (5) Modification of the traditional SRAM by additional I/O buses 

 
 

4. The LBC protocols and their proposed VIs 

In the previous two sections, In the previous two sections, a modification has been made to the internal 

architecture of the AVR to accept the proposed FDSLBC module that will carry out the suggested LBC. 

In this section, different LBC protocols (that will be implemented by the "FDSLBC" module) will be 

introduced. Besides, explain the proposed VIs that will control the FDSLBC to execute the required LBC. 

For the embedded systems, the cipher algorithm is a subprogram code written by users. It consists of a set of 

a series of instructions that can be stored in the program memory (as a firmware). 

Despite, our proposed block-cipher protocols are a firmware (machine code inside the program memory), but 

it has dynamic behavior because it consists of collection of cipher VIs. Each VI depends on variable cipher 

key(s). Therefore, any change in any cipher key will change the behavior of the total cipher algorithm as will 

see later. 

The cipher keys are dynamic keys (changeable keys) coming from the four SRAM locations (R1, R2, R3 and 

R4).  Users can change them based on generation of random numbers or by adequate equations or even 

through lock-up table. Moreover, these keys can be updated at any time depend on event(s) or under some 

conditions…etc. Further, users can instantly change their keys (in their codes) depending on the received 

data or data acknowledgments. 

Furthermore, the proposed VIs doesn’t rely solely on mathematical formulas (so it can be easily solved and 

predicted). In contrast, the new VIs will rely on the exchange, rotation, scrambling and shuffling of the data 

(that saved in the 4X4 byte-matrix) according to the bit states in either upper or lower nibbles of the cipher-

keys. 

This is mean that the four cipher-keys (from R1 to R4) will be divided into 8 nibble-keys. Users can use 

them in their own cipher protocols. Ultimately, at any given time, users have 8 nibbles * 4 bits leads to 232 

available values for his cipher protocol.  
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Many block cipher protocols are designed based on our idea, but only 4 protocols were chosen to prove our 

idea in this paper  (each protocol behaves as full symmetric cipher). These proposed protocols and their VIs 

will be carefully explained later on. 

All the proposed VIs will be executed in one clock pulse to be compatible with the execution times of the 

chose μC. All these VIs are listed in the table (2). It has totally 13 VIs that control the FDSLBC directly.   

As mentioned earlier, the "ITS" can toggling between either the conventional instructions or new VIs. Thus, 

if the user needs to utilize any added VIs, he has to firstly use the VI "TOGGL" to transforming into VIs 

protocols. In contrast, if he needs to use the conventional instructions (at any time), he must use VI 

"TOGGL" again, and so on. 

 

Table (2) List of the proposed VIs for the AVR 

 

No. Mnemonic 
Op-code 

[hex] 
Descriptions 

1 TOGGL FFFF 
Toggling between ID and FDSLBC and vice versa at single 

clock 

2 LOD16 DD00 
Load 16 bytes from SRAM (100h: 10Fh) into the registers in 

FDSLBC at single clock 

3 STO16 DD10  
Store 16 bytes from the FDSLBC into SRAM (100h: 10Fh) at 

single clock 

4 LDKEY DD20 Loading eight 4-bit keys into FDSLBC at single clock 

5 HIKEY DD30  Activating the HIGH keys 

6 LOWKY DD31 Activating the LOW keys 

7 CLW DD40 Activating the clockwise data-rotation (up-rotation) 

8 ACLW DD41 Activating the Anticlockwise data-rotation (down-rotation) 

9 CRY1B DD6B Performing data shuffling-1 (Bytes Rotation) in one clock 

10 CRY2B DD7B Performing data shuffling-2 (Bits Rotation) in one clock 

11 FLPKB DD5B 
Flip the bit arrangement of the selected nibble key from left to 

right or vice versa 

12 CRY3B DD8B Performing data shuffling-3 (Bytes Shuffling) in one clock 

13 CRY4B DD9B 
Performing data shuffling-4 (Up/down Bytes Rotation in 4 

columns) in one clock 

             Note 
B represents the upper or lower nibble of the of the selected key_R (R1, R2, 

R3 or R4) in the SRAM   

 

 

The second VI with mnemonic "LOD16" and op-code "DD00h" is responsible for loading 16 data-bytes 

concurrently (at same clock pulse) from the SRAM (starting from address 0100h) into the matrix of the 

FDSLBC. On the contrary, the "STO16" has op-code "DD10h" stores 16 data-bytes simultaneously from the 

matrix to the SRAM (starting at 0100h). 

The VI "LDKEY" with op-code "DD20h" loads 4 bytes (cipher keys) concurrently from the SRAM (from 

address 0001h to 0004h) into the key-buffers inside the FDSLBC. The two VIs "HIKEY" and "LOWKY" 

that have op-codes "DD30h" and "DD31" to activate the upper and lower nibbles of the loaded key-bytes. 

The two VIs "CLW" and "ACLW" that have op-codes "DD40h" and "DD41" enable the clockwise and 

anticlockwise data rotations respectively inside the FDSLBC. 

The remaining VIs are appended with letter “B” to designate the key-number (1: 4) while the VIs (HIKEY or 

LOWKY) assign the nibble (low or high) inside that keys. 

The set of VIs "FLPKB" consist of four VIs (FLPK1", "FLPK2", "FLPK3" and "FLPK4") which have op-

codes "DD51h", "DD52", "DD53" and "DD54" respectively. It reflects (flips) the bit-order of the selected 

nibble-key of the selected key-byte. For instance, if the nibble-key has value "0111", then its reflection will 

be "1110". Code sample of the instruction "FLPKB" is illustrated in the figure (6). The line "105" checks the 

high nibble-key while the line "107" checks the low nibble-key. The lines "106" and "108" renders the bit 

reflecting for the assigned nibble-key.  
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Figure (6) VHDL code of the instruction "FLPK2" 

 

The set of VIs "CRY1B" consists of four VIs (“CRY11", " CRY12", "CRY13" and " CRY14") has op-codes 

"DD61h", "DD62", "DD63" and "DD64" respectively to perform the cipher protocol-1 according to data 

representation in the figure (7). The protocol-1 depending on VIs “CLW” or “ACLW” (to define the 

direction of data rotation) and the two least bit of the selected nibble (rotation enable bits). When one of the 

VIs “CRY1B” is executed, the bytes (in the matrix) rotate one cycle (clock or anti-clock) as the table (3). 

 

Table (3) the different rotations of the protocol-1 

 

The least 2 bits of Nibble Rotation enable 

00 No rotation  

01 Rotation of the R H S for half-matrix 

10 Rotation of the L H S for half-matrix 

11 Rotation of both halves 

 

A portion of VHDL code to implement the "CRY1B" is shown in the figure (8). The line "127" is condition 

of clockwise rotation. The lines from "128" to "136" indicate the concurrent bytes rotations. 

 
 

 
Figure (7) Bytes rotations of the Protocol-1  
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Figure (8) VHDL code of the VI "CRY1B" 

 

The set of VIs "CRY2B" consist of four VIs (“CRY21", " CRY22", "CRY23" and " CRY24") has op-codes 

"DD71h", "DD72", "DD73" and "DD74" respectively. They perform bit-rotation according to data 

representation in the figure (9). The nibble of selected key defines the number of shifted bits in one cycle 

(from 1 to 7 bits) within the outer bytes (𝐸11, 𝐸12, 𝐸13, 𝐸14, 𝐸24, 𝐸34) and  (𝐸44, 𝐸43, 𝐸42, 𝐸41, 𝐸31, 𝐸21) of the 

matrix. All these bytes will be configured in a register with 96-bit as shown in the VHDL-line "152" of the 

figure (10). The two lines "157" and "158" make clockwise bit-rotation (shifting right), while the two lines 

"159" and "160" make anticlockwise bit-rotation (shifting left). 

 

 

Figure (9) Bits rotations of the Protocol-2 

 

 
Figure (10) VHDL code of the instruction "CRY2B" 

 

The subsequent group of VIs "CRY3B" are ("CRY31", "CRY32", "CRY33" and "CRY34") that have op-

codes "DD81h", "DD82", "DD83"and "DD84" respectively are carrying out their ciphers according to matrix 

multiplication in the figure (11). The 4X4 matrix represent the plain data, while the 4X1 matrix represent the 

selected nibble-key. The bits states of the nibble-key are either enabling or disabling their corresponding 

bytes-movements (shuffling indicated by arrows). For instance, if one of the VI has nibble-key equal "1001" 

as exposed in the figure (12), then the data-bytes in the first and fourth columns will be exchanged 

(swapped) only.  
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Subsequently, partial of its code is shown in the figure (13). The line "219" checks the activations (logic one) 

of both first and fourth key-bits.  The line "220" is performs the data swapping between the fourth and first 

columns. 

 
Figure (11) All bytes shuffling with the Protocol-3 

 

Figure (12) The selected key = "1001" on the Protocol-3  

 

 

 
Figure (13) segment of the code of the VI "CRY3B" 

 

The 4th set of the VIs "CRY4B" are ("CRY41", "CRY42", "CRY43" and "CRY44") that have op-codes 

"DD91h", "DD92", "DD93"and "DD94" respectively to make data shuffling (protocol-4) according to the 

table (4). 

 

 
Figure (14) all rows rotation vertically of the Protocol-4 

 

 

Figure (15) the 2 right columns are exchanged of the Protocol-4 
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Table (4) data shuffling of the protocol-4 

Nibble  One cycle data shuffle  Nibble  One cycle data shuffle  

0011 Bytes in the two right columns rotate 0111 Bytes in 2nd & 3rd & 4th columns rotate  

1100 Bytes in the two left columns rotate  1011 Bytes in 1st & 3rd & 4th columns rotate  

0110 Middle columns replacing 1101 Bytes in 1st & 2nd & 4th columns rotate  

1001 outer columns replacing  1110 Bytes in 1st & 2nd & 3rd columns rotate  

1010 1st & 3rd cols. replacing  1111 All columns rotate  

0101 2nd & 4th cols. replacing 0001 Bytes in 1st & 2nd & 3rd rows rotate  

0000 All rows rotate  0010 Bytes in 1st & 2nd & 4th rows rotate  

1000 Bytes 2nd & 3rd & 4th rows rotate  0100 Bytes in 1st & 3rd & 4th rows rotate  

 

For instance, if the VI "CRY4B" has nibble-key equal “0000”, all rows rotate vertically as seen in the figure 

(14). When the nibble-key equal "0011", then the data-bytes in the fourth and third columns are replaced as 

illustrated in the figure (17).  

Eventually, all VIs are designed without operands to reducing their fetching times. Each one of them is 

executed in single clock pulse. In the following section will use our VIs to perform short scenario for data 

encryption and decryption using the module FDSLBC. 

5. Running the protocols of the LBC 

In this section, we will check our proposed module to ensure that it meets the proposed specifications and 

achieves the intended goal. 

As illustrated in the table (5), there are three categories of VIs can check them. The first category called the 

"Block-Transfer" for transferring blocks of plain, keys and ciphered data. The second category called 

"Cipher-Attributes" for adding the desired features to the cipher protocols. The last category "Cipher 

Protocols" to perform the different ciphers protocols. 

 

Table (5) The three categories of the proposed VIs  

 
 
 
 
 
 

As mentioned before, this modification carries out LBC protocols for embedded systems, consequently the 

proposed FDSLBC designed by VHDL codes. Moreover, the behavior of this VHDL code will be displayed 

on the reliable simulator "Modelsim" during the different VIs executions.   

A scenario will be assumed to illustrate our idea by checking all VIs mentioned in this paper. This scenario 

includes two phases (encoding and decoding stages) as shown in figure (16). The first phase indicates an 

encryption algorithm while the second phase indicates algorithm of the compatible decryption. Each phase 

Cipher-Attributes Cipher Protocols Block-Transfer 

HIKEY/ LOWKY CRY1B LOD16 

CLW/ ACLW CRY2B STO16 

FLPKB CRY3B LDKEY 

 CRY4B 
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has 13 steps of different VIs. A set of plain data was assumed with 16 bytes (128 bits) as the figure (17). The 

assumed scenario will depend on only two cipher-keys (key_R1 = E3h) with nibble-keys ( 𝐵1𝐻 =

𝐸ℎ 𝑎𝑛𝑑 𝐵1𝐿 = 3ℎ) and (key_R2 = 71h) has nibble-keys (𝐵2𝐻 = 7ℎ 𝑎𝑛𝑑 𝐵2𝐿 = 1ℎ). 

  

 
Figure (17) The plain data inside the 4X4 matrix 

 

 

Figure (16) Scenario of two LBC algorithm, the 1st for encryption phase the 2nd for decryption phase 

 

All steps of our scenario will now be discussed guided by the figure (16) and present its results in figure (18) 

and figure (19). 

The encryption process begins by using VI "LOD16" (DD00h) to load the assumed plain data (16 bytes) 

from the SRAM to the 4X4 matrix as seen in the first step of the figure (16) and step “1a” of the figure (18). 

The 2nd VI is "LDKEY" (DD20h) loads the cipher-keys from SRAM as shown in the step "1a" of the figure 

(18). The 3rd VI "LOWKY" (DD31h) enables the FDSLBC to handle only the lower nibble-keys as 

illustrated in the step "1b" of the same figure. The 4th VI "CLW" (DD40h) activates the clockwise rotations 

inside the FDSLBC as shown in step "1c". The 5th VI "CRY41" (DD91H) to perform the Protocol-4. The 

least significant digit (LSD) of this VI is “1”, this mean that the first cipher-key is assigned. In this moment, 

the activated lower nibble-key (𝐵1𝐿 = 0011) is the operational key.  According to the table (4), the 𝐵1𝐿 =
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0011 Leeds to rotation of the data bytes of the two right hand columns of the matrix as seen in step "2" of 

figure (18). The 6th VI "CRY11" (DD61h) performs the Protocol-1. The lowers nibbles of cipher-keys are 

still activated (𝐵1𝐿 = 0011); therefore, the bytes rotate as shown in the 4th row of table (3) and step “3” of 

figure (18).  

The 7th VI "CRY32" (DD82h) performs the Protocol-3. It depends on the lower nibble (𝐵2𝐿 = 0001) of the 

key-2 (the LSD =2). So, only the data-bytes in the right column of the matrix will be transferred (guided 

with figure (12)) and as shown in step "4" of figure (18). The eighth VI "CRY22" (DD72h) performs the 

Protocol-2. It rotates one bite of all outer bytes inside the matrix as indicated in the figure (9) and step "5" of 

figure (18). The 9th VI "HIKEY" (DD30h) enables the FDSLBC to deal with the upper nibble-keys only. 

The 10th VI "CRY42" (DD92h) performs the Protocol-4. It depends on the higher nibble (𝐵2𝐻 = 0111)  of 

key-2 (LSD = 2). Thus, the bytes in the three right columns of the matrix rotate (as 1st row of table (4)) in 

the clockwise direction as demonstrated in step "6" of figure (18). The 11th VI "FLPK1" reflects the bit-

order of the current nibble-key. In our scenario, the upper nibble-key-1 equal "1110", so its reflection will be 

"0111". The twelfth VI "CRY31" performs the Protocol-3. It relies on the reflected upper nibble of the key-1 

(LSD =1). The reflected nibble-key has code "1110", thus it allows the data-bytes to transfer among the three 

right columns of the matrix as clarified in the step "7" of figure (18). The first phase is ended by the 

thirteenth VI "STO16" to load 16 data bytes (represent a ciphered text) from the FDSLBC to the SRAM 

locations. 

 

 
Figure (18) snap shots of the encryption steps 
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In the symmetric key encryption, the decryption algorithm is serving as a mirror of its encryption algorithm. 

All the used VIs will be repeated with their same attributes but in the opposite direction as demonstrated in 

figure (19).  

The decryption algorithm begins by loading 16 data bytes (represent a cipher text or section of a great cipher 

text) from the SRAM into the FDSLBC using the VI "LOD16" as illustrated in the step "1" of the figure 

(19). It is clear that the loaded 16 data-bytes are similar to the early ciphered from the previous encryption 

algorithm. The next VI "LDKEY" loads the same cipher keys that loaded for the mentioned encryption 

process (symmetric keys).  

Previously, the data in the encryption phase rotated in clockwise directions, therefore all the data in this 

decryption phase would rotate in the opposite direction (anticlockwise). Therefore, the third VI "ACLW" 

permits the FDSLBC to rotate all data anticlockwise. 

The last encryption protocol was Protocol-3 with reflected high nibble-key. Thus, the fourth VI will be 

"HIKEY" to enable the upper keys. Moreover, the fifth VI is "FLPK1" to reflect the nibble-key number one. 

The sixth VI "CRY31" is used to carry out the Protocol-3. According to the reflected nibble-key "1" with 

code "1110", the data-bytes are moving among the least three right columns as displayed in step "2" of the 

figure (19).  

The seventh VI "CRY42" used to carry out the Protocol-4. It depends on the upper nibble of the second key 

(LSD=2) that has code equal "0111", so the least three columns will rotate vertically anticlockwise as 

demonstrated in step "3". The eights VI "LOWKY" used to handle all lower nibbles of all loaded keys. The 

ninth VI "CRY2B" used to carry out the Protocol-2. It rotates anticlockwise all bits in the exterior bytes of 

the matrix as in the step "4". The tenth VI "CRY32" carries out the Protocol-3. It depends on the lower 

nibble of the second key. The lower nibble has code "0001", so the data-bytes transfers via the least column 

only as shown in step "5". The eleventh VI "CRY1B" carries out the Protocol-1, so it rotates all bytes 

anticlockwise for both left and right halves of matrix together as shown in step "6". The 12th VI "CRY41" 

carries out the Protocol-4. It depends on the nibble-key-1. It has code "0011". Therefore, all bytes in the two 

least columns of the matrix rotate vertically in the direction anticlockwise as demonstrated in step "7". The 

13th VI "STO16" stores the original data into the SRAM. 

As a resultant, it can be realized that the result of the decryption algorithm that shown in the figure (19) has 

completely restored each original plaintext in their original arrangements that were encoded in the 

encryption stage as shown in figure (18). 
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Figure (19) snap shots of the decryption steps 
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6. Conclusion 

 

In this paper, a VHDL module was introduced to  carry out various light block-cipher protocols rapidly for 

128 bits within 4X4 matrix. 

The behavior of this module has been verified through a full short scenario. Any cryptography programmers 

can extend our mentioned scenario up to thousands of VIs (or more) or reduce it according to their design 

requirements and degree of security. 

The speed of performing these proposed cipher protocols is determine by one VI/clock pulse. 

Later, designers and researchers can modify this idea with various features such as: - 

- Expanding its matrix dimensions to handle a wide range of data simultaneously. 

- Adding more VIs with different ideas of cipher protocols. 

- Assigning a greater number of key-bytes. 

- Implementing it by the VLSI tools to consume little power. 
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