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A B S T R A C T 

 

         

One of the most prevalent methods employed in medical 

research involves identifying brain tumors and monitoring their 

growth through brain MRI scans. By examining the internal structure 

of the human brain, valuable insights regarding tumor development 

can be obtained. However, manually detecting brain tumors from 

MRI scans poses a significant challenge within the medical research 

field, as tumors can lead to substantial alterations in both the internal 

and external brain structure. To address this issue, it is suggested to 

explore recent classifier approaches for the detection of brain tumors 

in MRI images. By utilizing these advanced techniques, the 

performance and analysis of brain tumor growth can be described, 

enabling the identification of general symptoms and facilitating a 

targeted diagnosis for an effective treatment plan. This discussion 

encompasses various classification approaches derived from existing 

research papers, ultimately leading to conclusive findings on brain 

tumor detection from MRI scans. 

     
                                          © 2023 Modern Academy Ltd. All rights reserved

 

1. Introduction 

        Abnormal cell growths in the brain or surrounding tissues are known as brain tumors. Brain tumors can 

be classified as malignant (cancerous) or benign (non-cancerous), with the latter being more aggressive and 

perhaps fatal[1][2]. The classification system established by the World Health Organization (WHO) 

categorizes brain tumors into several primary groups. Gliomas are one of the most common forms; they are 

derived from glial cells. Gliomas can be further subdivided into ependymomas, oligodendrogliomas, and 

astrocytomas based on the particular glial cell that is implicated and the tumor's histological features. 

Another category of brain tumors is meningiomas, which develop from the meninges, the protective 

membranes enveloping the brain and spinal cord. Meningiomas are typically benign tumors characterized 

by a slow growth rate. Furthermore, pituitary tumors are identified by the WHO classification scheme. 

These tumors originate in the pituitary gland, which is located near the base of the brain. The pituitary gland 
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is responsible for regulating hormone production. Pituitary tumors can disrupt hormonal balance and 

manifest in various symptoms[3]. 

Brain imaging techniques refer to the various methods used to visualize the brain's structure, function, and 

connectivity. These techniques allow researchers and clinicians to study the brain and diagnose neurological 

conditions. Magnetic resonance imaging (MRI), computed tomography (CT), electroencephalography 

(EEG), positron emission tomography (PET), and functional magnetic resonance imaging (fMRI) are a few 

frequently utilized brain imaging modalities[4]. Among these techniques, MRI is considered one of the 

most versatile and widely used methods due to its exceptional anatomical detail, non-invasiveness, ability 

to capture functional and physiological data, and superior soft tissue contrast[5]. 

In order to interpret radiological and pathological pictures, sophisticated software systems called computer-

aided detection and diagnosis (CAD) combine computer vision and artificial intelligence approaches. To 

help radiologists correctly diagnose a range of disorders in distinct anatomical locations, these cutting-edge 

technologies have been developed[6]. 

Machine learning has significantly accelerated the advancement of CAD systems. In recent times, machine 

learning has been applied to classify objects of interest, such as lesions, by leveraging input features. 

Machine learning enables the discovery and learning of informative features that effectively capture 

patterns and regularities in data. Unlike traditional approaches, where human experts design features based 

on domain knowledge, machine learning offers the ability to automate feature extraction. However, it 

should be noted that the complexity of living organisms far exceeds the superficial linear relationships 

detectable by traditional machine learning methods[7]. This highlights the need for more sophisticated 

approaches to uncover the intricate biology underlying disease detection and diagnosis. 

Deep learning, inspired by the neural networks in the human brain, has revolutionized various challenges 

by integrating feature extraction and selection into the training process. Deep learning models consist of 

multiple layers, where each layer combines elements from the previous layer using weighted sums. This 

layered structure enables deep learning models to effectively capture complex mapping functions, 

surpassing traditional machine learning methods. With minimal human intervention, deep learning has 

consistently outperformed alternative approaches and has gained widespread adoption in medical image 

analysis for a range of tasks[8]. It offers unprecedented potential for advanced analysis and diagnosis in the 

medical field. 

Convolutional neural networks, or CNNs, are a kind of deep learning architecture that are frequently applied 

to tasks involving images[9]. CNNs use several layers of connected nodes to automatically learn and extract 

pertinent characteristics from images. They utilize convolutional layers to apply filters and extract patterns, 

followed by pooling layers to down sample the extracted features. Finally, fully connected layers are used 

for classification or regression tasks. Conversely, transfer learning is a method that uses large-scale datasets 

to make use of pre-trained CNN models. Instead of training a CNN from scratch, transfer learning allows 

us to take the learned feature representations from a pre-trained model and apply them to a new task or 

domain 

In this research , An overview of the use of Convolutional Neural Network (CNN) transfer learning models 

for the classification of MRI images of brain tumors is provided. CNNs have demonstrated amazing 

effectiveness in a variety of computer vision tasks, including medical image analysis, thanks to the quick 

developments in deep learning. We investigate the application of transfer learning, a method that makes 

use of CNN models that have already been trained, to the categorization of brain tumor MRIs. By fine-

tuning pre-trained CNNs on a dataset of brain tumor MRI images, we demonstrate the effectiveness of 

transfer learning in extracting relevant features and improving classification accuracy. Additionally, we 

discuss the benefits of transfer learning, such as reduced training time and the ability to handle limited 

datasets. In this overview, we demonstrate CNN transfer learning's potential as a useful tool to help 

radiologists and other medical professionals correctly diagnose brain cancers from MRI scans. 

2. Material and method 

    The fundamental difference between a traditional classifier and a deep Convolutional Neural Network 

(CNN) lies in their approach to feature extraction and pattern recognition. Traditional classifiers rely on 

manually engineered features, which are typically designed by domain experts[10]. These handcrafted 

features are based on prior knowledge and understanding of the problem domain. However, deep CNNs are 

made to automatically identify and extract pertinent features from unprocessed input, especially from 

material that resembles a grid, like pictures. Convolutional, pooling, and fully connected layers are just a 

few of the layers that CNNs use to learn hierarchical feature representations. Deep CNNs are able to 
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automatically extract non-trivial features from the data, including spatial correlations and minute details 

that would be difficult for conventional classifiers to identify. As a result, deep CNNs are particularly 

effective in image-related tasks and have demonstrated superior performance in various domains specially 

in medical domain. 

This paper provides an overview of research articles published between 2018 and 2022 that delve into the 

realm of brain tumor classification This overview focuses on using transfer learning techniques in 

conjunction with Convolutional Neural Networks (CNNs). Through the use of a transfer learning 

methodology, the research reviewed in this paper improves CNN models' classification performance in 

brain tumor analysis by utilizing prior information gleaned from extensive datasets.The paper aims to 

present a scientific overview of the advancements made in this domain during the specified time frame. 

This section is formulated as follows. 

Figure 1 illustrate the basic structure of CNN. 

 

 
 

Fig. 1 Basic structure of CNN 

 

The utilization of Convolutional Neural Networks (CNNs) involves a systematic four-step. Firstly, 

input images are acquired from the dataset, serving as the initial data representation. Secondly, the acquired 

images undergo preprocessing techniques to enhance their quality and suitability for analysis, utilizing 

various methods such as normalization, resizing, and color space conversion. Thirdly, a pre-trained CNN 

model that was trained on a sizable dataset is used to apply CNN transfer learning. This method makes it 

possible to apply learnt feature representations from the pre-trained model to the current task, which makes 

training and testing the CNN on the particular dataset more effective. Ultimately, the CNN model's 

performance is assessed, usually through the use of metrics such as F1 score, accuracy, precision, and recall. 

The assessment procedure guarantees the robustness and dependability of the outcomes by offering insights 

into how well the model classifies events that have not yet been observed. 

3. Dataset 

Datasets can be found on particular websites. The datasets and their URLs are shown in Table 1. 

 

 Table 1 URLs for Datasets  

Dataset Name Available website 

Figshare brain tumor dataset https ://www.figshare.com/articles/brain tumor 

dataset 

Kaggle brain tumor dataset https ://www.kaggle.com/brain tumor dataset 

BraTS brain tumor dataset http://www.smir.ch/BRATS 

The Cancer Imaging Archive (TCIA) https://www.cancerimagingarchive.net 

Preprocessing 
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4. Preprosessing 

4.1. Normalization 
 

Normalization of brain tumor MRI images involves adjusting the intensity values of the images to a 

standardized range[11]. This is done to account for variations in intensity caused by different factors such 

as scanner settings and imaging protocols. Two common methods used for normalization are linear 

normalization and non-linear normalization. In linear normalization, the intensity values are rescaled to a 

predefined range, such as 0 to 255, improving the visibility of tumor features. Non-linear normalization 

methods, such as histogram equalization and histogram matching, redistribute intensity values to enhance 

contrast and ensure consistency. Normalization improves visual interpretation, facilitates quantitative 

analysis, and serves as a foundation for further processing steps like segmentation and classification, aiding 

in tumor characterization and treatment planning. 

 

4.2. Resizing 

 

All of the images must be resized before being entered into CNN classification models in order to 

comply with the fixed input size requirement of deep neural networks. Resizing ensures that the images 

conform to the specific dimensions expected by the network. This process involves adjusting the size of the 

images while maintaining their aspect ratio or by applying cropping or padding techniques to match the 

desired dimensions. By resizing the images, they become compatible with the network architecture, 

allowing for efficient processing and ensuring consistent input across different images. 

 

4.3. Bias Field Correction 

 

Unwanted artifacts in medical imaging, such as scan position, instrument used, and unidentified 

problems, might lead to the bias field. This artifact can seriously impair the efficacy of medical image 

analysis methods. It appears as fluctuations in brightness across the image. Hence, before employing 

distorted MRI images for CNN classification models, a preprocessing step is required to rectify the bias 

field signal. The Statistical Parametric Mapping (SPM) module and the N4 bias field correction algorithm 

are two frequently used techniques for addressing the intensity inhomogeneity and bias field correction in 

MR images[12]. A popular technique for addressing the low-frequency intensity non-uniformity in MR 

image data is the N4 bias field correction algorithm. However, SPM is a complete tool for brain 

segmentation tasks; it consists of software packages that contain segmentation routines, intensity non-

uniformity (bias) correction, and skull stripping. With the SPM module or the N4 bias field correction 

algorithm, the inhomogeneity in the intensity of MR images can be effectively adjusted. This preprocessing 

step enhances the accuracy and reliability of subsequent analysis tasks, including classification using CNN 

models. Correcting the bias field artifact ensures that the image data used for classification is more 

standardized and reliable, ultimately improving the performance of the CNN classification model. 

 

4.4. Skull stripping 

 
In brain tumor classification problems, distinguishing between the tumor and the skull can be challenging due to 

the similarity in intensity between them. To overcome this issue and improve the performance of classification models, 

skull stripping is commonly employed as a preprocessing step[13]. Skull stripping involves removing the surrounding 

skull region from the brain image, isolating the tumor and enhancing its visibility. By eliminating the interference 

from the skull, the classification model can focus more accurately on the tumor region, leading to improved 

performance and more reliable classification results. Skull stripping is an essential technique that helps to address the 

intensity overlap between the tumor and the skull, enabling better differentiation and enhancing the overall 

effectiveness of brain tumor classification systems. 

 

4.5. Data Augmentation 
 

Large datasets are important for CNN-based classification tasks. To achieve good problem 

generalization, a common recommendation recommends having about ten times as many samples as the 
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network's parameters. Overfitting is a possibility in cases where the database is small. Data augmentation 

approaches are commonly used, especially in brain tumor classification research, to solve challenges of 

unbalanced distribution and data shortage. Applying geometric adjustments to the current dataset is known 

as data augmentation. Rotation, scaling, translation, mirroring, and cropping are some of these 

transformations. By performing these operations, the dataset is expanded, creating variations of the original 

samples. This augmentation helps to diversify the dataset, making it more robust and reducing the risk of 

over fitting. Data augmentation enhances the model's capacity to learn various features and generalize 

effectively to previously unseen data by purposefully growing the sample size. [14]. 

In the context of brain tumor classification, data augmentation techniques have been extensively utilized to 

address the limited availability of labeled data. By applying geometric transformations, the augmented 

dataset provides additional training samples, enabling the CNN model to learn more effectively and 

improve its classification performance. 

 

5. Convolutional Neural Network (CNN) 

Specifically created for processing organized grid-like input, like images or sequences, Convolutional 

Neural Networks (CNNs) are a form of deep learning model. picture categorization, object identification, 

and picture segmentation are just a few of the computer vision tasks that frequently use it. 

The convolutional layer is a crucial component of a CNN. Convolutional layers are made up of several 

filters or kernels that slide over the input data and extract local characteristics by summing and multiplying 

the elements at a time. These filters aid in identifying various aspects and patterns in the supplied data. 

Multiple convolutional layers are stacked to enable the network to learn ever-more-abstract and complex 

features. Figure 2 illustrate the convolutional layer of CNN. 

 
 

Fig.2 The convolutional layer of CNN 

CNNs frequently have pooling layers after the convolutional layers. By downsampling, pooling layers 

(usually by max pooling or average pooling) minimize the spatial dimensions of the features. By lowering 

computational complexity and strengthening the network's resistance to input fluctuations, pooling aids in 

the extraction of the most pertinent and instructive features. Fig.3 illustrate the pooling layer of CNN. 

 
 

Fig. 3 The pooling layer of CNN 
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CNNs have fully connected layers in addition to convolutional and pooling layers. Like a standard neural 

network, these layers link every neuron in the preceding layer to every neuron in the following layer. The 

network can learn high-level representations and generate predictions using the retrieved information 

thanks to fully linked layers. 

CNNs usually end with an output layer, which can have different configurations depending on the task at 

hand. The output layer for image classification frequently comprises of softmax activation, which provides 

class probabilities for every potential category [15]. In other tasks like object detection or segmentation, 

the output layer may involve different activation functions and structures to produce the desired output 

format. 

In machine learning, transfer learning is the process of applying knowledge from addressing one problem 

to another that is related yet unrelated. Transfer learning in the context of Convolutional Neural Networks 

(CNNs) is the use of pre-trained models that were trained on a large-scale dataset such as ImageNet. 

ImageNet is an image classification dataset with millions of labeled images spanning a thousand different 

classes. These models have been trained on ImageNet to learn general visual representations, capturing 

features like edges, shapes, and textures. As a result, these pre-trained models have developed a strong 

ability to extract meaningful features from images. When using ImageNet models for transfer learning, the 

previously trained layers are often kept and utilized as a feature extractor. The final fully connected layers 

of the original model, which are responsible for classifying images into ImageNet classes, are often replaced 

with new layers suited to the target task. These new layers are trained using a smaller, task-specific dataset. 

Transfer learning models of Convolutional Neural Networks (CNNs) offer several advantages, including 

leveraging learned visual representations, addressing limited labeled data challenges, improving 

convergence and generalization, and facilitating the transfer of domain-specific knowledge. By starting 

with pre-trained models, we avoid the need to train the entire network from scratch, saving computational 

time and reducing the overall training burden. The computational time in transfer learning is mainly spent 

on fine-tuning the task-specific layers, while the pre-trained layers, acting as feature extractors, require 

minimal computation. This approach speeds up the training process and contributes to the efficiency of 

using transfer learning models in CNNs. 

VGG16, VGG19, ResNet, Inception models, MobileNet, and DenseNet are a transfer learning models that 

are based on convolutional neural networks (CNNs). 

 

5.1. VGG Transfer learning model 

Deep convolutional neural network designs VGG16 and VGG19 were created by the University of 

Oxford's Visual Geometry Group (VGG). They are well-known for being straightforward and efficient 

when it comes to classifying images. Convolutional, pooling, and fully linked layers are among the many 

layers that make up both models. 

There are 16 layers in all in VGG16: 3 fully linked layers and 13 convolutional layers [16]. Mostly, 3x3 

filters with a stride of 1 and padding of 1 are used in the convolutional layers of VGG16. After these layers 

come max pooling layers with a stride of two and 2x2 filters. At the end of the network, the completely 

connected layers carry out the categorization operation. VGG16 normally requires an input image with 224 

x 224 pixel size. 

VGG19 extends VGG16 by adding four additional convolutional layers, resulting in a total of 19 layers. 

The additional layers enhance the model's depth and representation capacity. VGG19 employs 2x2 filters 

with a stride of 2 in the max pooling layers and 3x3 filters with a stride of 1 in the convolutional layers, 

similar to VGG16. There are no changes to the completely connected layers. Typically, the dimensions of 

the input image for VGG19 are 224 by 224 pixels. 

Both VGG16 and VGG19 are known for their uniform architecture, where the layers are stacked one after 

another, making them easy to understand and implement. The deeper layers capture more complex and 
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abstract features, while the pooling layers downsample the spatial dimensions, reducing computational 

complexity. 

 

5.2. ResNet transfer learning model 

A popular transfer learning model in the deep learning space is called ResNet, short for Residual 

Network. By addressing the vanishing gradient issue, it developed the idea of residual connections, which 

permits the training of even deeper networks. 

ResNet architectures come in various depths, such as ResNet50, ResNet101, and ResNet152. These 

numbers represent the number of layers in the network. For example, ResNet50 has 50 layers, ResNet101 

has 101 layers, and so on. The deeper versions of ResNet typically offer improved performance but come 

at the cost of increased computational complexity[16]. 

Multiple "residual blocks" serve as the building blocks of ResNet models. Every residual block uses skip 

connections, sometimes referred to as shortcut connections, and has two or more convolutional layers. 

These skip connections enable the gradient flow to bypass one or more layers, allowing the network to learn 

residual mappings. By incorporating these residual connections, ResNet models can effectively train deeper 

architectures. The input image dimensions for ResNet models are typically 224x224 pixels. 

  

5.3. Mobile Net Transfer learning 

MobileNet was created especially for embedded and mobile devices with constrained processing 

power. It provides a fair balance between accuracy and model size, which makes it ideal for real-time 

applications on devices with limited computing power. 

MobileNet consists of several building blocks called depth-wise separable convolution blocks. Depth-wise 

convolution, batch normalization, and ReLU activation are the first three steps in each block. Point-wise 

convolution, additional batch normalization, and ReLU activation come next. These blocks are stacked to 

form the overall MobileNet architecture. The input image dimensions for MobileNet are typically 224x224 

pixels, similar to other popular CNN architectures[17].  

Because of their small size, low computing cost, and high accuracy, mobile net models are a good fit for 

situations with constrained computer resources.  

 

5.4. Inception transfer learning 
 

Inception is another transfer learning model in convolutional neural networks (CNNs) that was 

introduced by Christian Szegedy et al. in 2014. The Inception architecture is known for its use of multiple 

filter sizes in parallel, allowing it to capture features at various scales and improve the network's ability to 

recognize complex patterns. 

In Inception, the network consists of multiple "Inception modules" stacked on top of each other. Each 

module performs different convolutions with different filter sizes, including 1x1, 3x3, and 5x5 filters. These 

filters are applied to the input in parallel, and their outputs are concatenated to form the module's output. 

This parallel approach allows the network to capture both local and global features effectively. The input 

dimension of images for Inception is typically 224x224 pixels. However, variations of the Inception 

architecture, such as Inception-v3, can also handle larger input sizes like 299x299 pixels. Table 2 illustrates 

the comparison between transfer learning models. 
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Table 2 The comparison between transfer learning models. 

Model Year 
Number of 

Layers 

Parameters 

(according to 

ImageNet) 

Notable Feature 

VGG16 2014 16 138 million 

Deep 

architecture, 

uniform structure 

VGG19 2014 19 144 million 
Deeper version of 

VGG16 

MobileNet 2017 28 4.2 million 

Depth wise 

separable 

convolutions 

Residual 

connections 
ResNet 2015 

Varies (up to 

152) 
Varies 

Inception 2014 Varies (up to 4) Varies Multiple parallel 

 

 

6. Performance Measurement 

In brain tumor classification research, a CNN algorithm's performance evaluation is essential. 

Evaluation measures like accuracy, precision, sensitivity, F1 score, and area under the curve (AUC) are 

frequently seen. These measurements offer insightful information about the categorization 

performance[18]. Accurately classifying an image as positive is known as true positive (TP), while correctly 

classifying an image as negative is known as true negative (TN). When an image is mistakenly categorized 

as positive, it is called false positive (FP), and when an image that should be classified as negative is 

mistakenly labeled as false negative (FN). These measures aid in evaluating how well the CNN algorithm 

classifies brain tumor images. 

6.1. Accuracy 

A performance indicator called accuracy is used to assess how well a transfer learning model in CNNs 

performs in categorization. It calculates the percentage of cases that are correctly classified relative to the 

total number of instances. 

 ACC=
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                  (1) 

6.2. Specificity 

It calculates the percentage of accurately identified negative cases relative to the total number of negative 

cases that actually occur. 

 SPE=
𝑇𝑁

𝑇𝑁+𝐹𝑃
                                                 (2) 
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6.3. Precision 

It calculates the percentage of genuine positives—that is, positively classified instances—among all 

instances that the model has determined to be positive. 

 PRE=
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                              (3) 

6.4. Sensitivity 

Also referred to as true positive rate (TPR) or recall. It calculates the percentage of real positive cases—

that is, true positive instances—that the model properly identifies out of all actual positive instances. 

 SEN=
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                 (4) 

 

6.5. F1 Score 

The model's capacity to deliver both high precision (correct positive predictions) and high recall (precise 

identification of positive examples) is balancedly evaluated by the F1 score. It is particularly helpful when 

memory and precision are equally critical for the given task or when there is an imbalance between 

positive and negative examples. 

 F1 Score=2
𝑃𝑅𝐸∗𝑆𝐸𝑁

𝑃𝑅𝐸+𝑆𝐸𝑁
                                        (5) 

6.6. Area under the Curve 

It gauges how well the model predicts things overall across various classification thresholds. As the 

classification threshold changes, the AUC measures the trade-off between the true positive rate (sensitivity) 

and the false positive rate (specificity). A higher AUC value shows that the transfer learning model can 

reliably distinguish between positive and negative occurrences across a range of thresholds, indicating 

improved discriminative ability. 

7. Overview of using Transfer learning models of CNN 

Research publications have been produced in large quantities due to the popularity for CNN-based deep 

learning techniques. These publications summarize the efficacy of CNN algorithms in brain tumor 

classification and provide suggestions for future research directions. 

Kaur and Gandhi conducted a study focusing on the development of an automated system for brain image 

classification using the VGG-16 model and transfer learning techniques[19]. The main objective was to 

assess how well a transfer learning-trained VGG-16 model performed in classifying diseased brain images. 

In order to achieve this, the final few layers of the original VGG-16 model were altered to fit the particular 

image categories that were pertinent to the investigation. The assessment stage made use of the AANLIB 

database, which included a set of brain scans from Harvard Medical School. A selection of 160 axial T2-

weighted MR brain pictures was selected from this database. Twenty of these photos were normal cases, 

and the other 140 were aberrant cases. A 256 × 256 pixel in-plane resolution was used to capture the images. 

The suggested approach consisted of a number of consecutive phases. First, in Step 1, the Harvard 

repository provided the dataset, which was arranged in the "imgData/train" directory and included both 

normal and aberrant T2-weighted MR images. Then, in Step 2, all subfolders inside the directory were 

included, suitable labels were assigned based on the folder names, and an image DataStore was created to 

read the images. 

Step 3 involved resizing the input images to make sure they fit the input layer size of the VGG-16 model. 

In Step 4, the data was divided into training and test sets. Ninety percent of the photos in each category 
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were designated as training images, and the remaining ten percent were designated as test datasets to assess 

the network's performance. 

Step 5 then involved a review procedure for the network design, specifically for the "vgg16" model. In this 

stage, the final three layers of the pre-trained network were changed or replaced with a predetermined set 

of layers: a "classification output" layer, a "softmax" layer, and a "fc" layer (fully connected). Based on 

earlier research findings, this update made it easier to classify images into normal and pathological groups. 

Step 6 involved training the modified network using the training dataset. The network learned from the 

input images and adjusted its parameters to enhance its ability to accurately classify between normal and 

abnormal brain images. Subsequently, in Step 7, the newly trained classifier was tested using a separate 

testing dataset to evaluate its performance in a real-world scenario. 

Finally, in Step 8, performance metrics were computed and reported to assess the efficacy of the proposed 

methodology. These metrics covered a range of assessment parameters, including recall, accuracy, 

precision, F1 score, and others, and they offered insightful information about the network's classification 

performance on the testing dataset. Notably, the proposed methodology aimed to achieve exceptional 

performance in terms of sensitivity, specificity, and accuracy, with all metrics set at the ideal value of 100%. 

Deepak, S., & Ameer, P. M. addresses a classification problem involving three prominent types of brain 

tumors, namely glioma, meningioma, and pituitary tumors[20]. Using a pre-trained GoogLeNet model, the 

suggested approach applies the idea of deep transfer learning to extract characteristics from brain MRI 

images. The collected features are subsequently classified using tried-and-true classifier models. Using an 

MRI dataset from figshare, the study applies a five-fold cross-validation procedure at the patient level. The 

publicly available figshare dataset includes 3064 brain MRI scans from 233 patients who were diagnosed 

with one of three brain malignancies: meningioma, glioma, or pituitary tumors. It is frequently used to 

assess classification and retrieval methods. Coronal, sagittal, and axial views are included in the T1-CE 

MRI modality images. The dataset includes 930 images of pituitary tumors, 708 images of meningiomas, 

and 1426 images of gliomas. The images are sent as .mat files, complete with a size of 512x512 pixels. The 

MRI images were preprocessed in order to use the GoogLeNet model, which was initially created for RGB 

color images with an input layer of size 224x224x3. This included scaling the values between 0 and 1 using 

a min-max normalization technique, normalizing the intensity values, resizing to 224x224 pixels, and 

creating three channels by replicating the grayscale values three times. Using the figshare dataset, the 

suggested approach was evaluated using a patient-level five-fold cross-validation method Five roughly 

equal-sized subsets were created from the 233 patient dataset; one subset was designated as the test set, and 

the other four as the training set. To make sure that a patient's data did not show up in both the test and 

training sets, this procedure was repeated. Using the preprocessed training set, the updated GoogLeNet 

model was trained, and its hyperparameters were heuristically tuned to promote the loss function's 

convergence during training. With an initial learning rate of 0.0003 set to balance convergence and training 

time, the Adam optimizer was chosen because of its adaptable nature and good learning rate. The training 

speed and computing needs were balanced by using a mini-batch size of 30, and the loss function of cross-

entropy was selected to quantify the degree of similarity between the anticipated and real distributions. The 

updated FC layer was trained with a learning factor of 10 to identify features unique to MRI images. Ten 

epochs were the maximum number allowed in order to avoid overfitting. Following the modified 

GoogLeNet's final inception module, features were taken out of the pooling layer and classified using 

Support Vector Machines (SVM). To support multi-class classification, an ECOC model-based multi-class 

SVM was used. Additionally, the KNN classifier was employed, with the distance metric being Euclidean 

distance and the square root of the number of samples in the training set being 49. The five trials were 

averaged and given in a mean±standard deviation manner. The experiments were carried out five times, 

with each trial undergoing a five-fold cross-validation procedure. An array of performance metrics is 

commonly employed to assess a classifier's efficacy. Classification accuracy, defined as the ratio of 

correctly classified samples to total data samples, is the most widely used metric. The deep transfer learning 

(standalone) model achieved 92.3±0.7% classification accuracy in our trials, SVM achieved 97.8±0.2% on 

deep CNN features, and KNN achieved 98.0±0.4% on deep CNN features. The outcomes show that deep 

CNN feature classification with SVM or KNN performs better. However, if the test dataset is uneven, as 

the dataset under consideration in this study is, then classification accuracy might not be the right metric to 

use. 
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Rehman, Arshia, et al. proposed framework involves three studies that employ three convolutional neural 

network architectures, namely AlexNet, GoogLeNet, and VGGNet, to classify three types of brain tumors: 

meningioma, glioma, and pituitary[21]. Each study investigates the application of transfer learning methods 

on MRI slices of a brain tumor dataset downloaded from Figshare, such as freezing and fine-tuning. The 

categorization of brain cancers from 233 patients with three different categories of brain tumors using T1-

weighted, contrast-enhanced images. MRI scans were processed using a variety of machine learning and 

image processing algorithms to improve contrast. To create high-resolution contrast images, contrast 

stretching—a preprocessing method that expands the dynamic range of gray levels for low-contrast MRI 

images—was used. With 8 bits per pixel, the MRI pictures in the brain tumor dataset downloaded from 

Figshare have 256 levels of grayscale, ranging from 0 to 255. 

Different image variations were obtained by using typical data augmentation techniques, which increased 

the size of the dataset and decreased overfitting during CNN training. A number of data augmentation 

methods, including as flipping and rotations, were used to increase the size of the training dataset and give 

CNNs a lot more input space. One fundamental method of data augmentation was rotation, which involved 

rotating input images at angles of 90, 180, and 270 degrees. Flipping, which mirrors images both vertically 

and horizontally, was another technique used. In order to extract distinctive visual characteristics for the 

categorization of brain tumors, three pretrained CNN architectures were implemented: AlexNet, 

GoogLeNet, and VGGNet. For every architecture, two distinct transfer learning scenarios were used: 

freezing and fine-tuning. In order to improve the CNN network's productivity and efficiency, fine-tuning 

entailed just replacing the final layers of the pretrained network. The pretrained network's weights were 

transferred from the source dataset (ImageNet) to our target dataset (Figshare) by initializing the ConvNet 

weights from the top of the pretrained network. A new softmax layer pertinent to the classification problem 

of brain tumors was added after the pretrained network's softmax layer was trimmed. The last fully 

connected layer of each CNN architecture was replaced with neurons corresponding to the three classes of 

the brain tumor dataset (Figshare), replacing the 1000 classes of ImageNet. 

In the first case, brain tumor classification was accomplished by employing the softmax layer and 

initializing the number of neurons to three classes. The learnt visual features from each CNN architecture 

were then adjusted to the target dataset. In order to enhance performance, the fine-tuning parameters were 

established and refined based on the outcomes of training the MRI images. For every architecture, 0.9 

momentum was used for the training of stochastic gradient descent momentum (SGDM), with a batch size 

of 10, an initial learn rate of 1e−4, and a maximum of 30 epochs. The validation frequency was set at 300 

iterations, and the number of optimal epochs was adjusted according to the validation criteria. Using 

VGG16 on epoch 7, the best network's greatest accuracy was reached up to 98.69%. 

In the second case, an SVM linear classifier was given the pretrained networks' frozen layers, also known 

as ConvNets or fully linked layers. For the purpose of classifying brain tumors, distinct feature vectors from 

each architecture were sent separately to the SVM. Conv5 characteristics were given to the SVM by 

vectorization, and they were more expressive, abstract, and discriminative for AlexNet. In this instance, the 

maximum accuracy of 96.73% was attained. To unify dimension, the GoogLeNet inception layers were 

investigated and vectorized throughout the activation process. In this instance, inception-4e-output 

characteristics yielded the maximum accuracy of 97%. Comparably, Fc7 characteristics for VGG16 were 

sent to the SVM for classification since they were more expressive. The greatest accuracy that was attained 

was 89.76%. 

 

Polat, Özlem, and Cahfer Güngen proposed solution involves utilizing transfer learning networks to 

classify brain tumors in MR images[22]. To identify the most prevalent kinds of brain cancers, they 

specifically used transfer learning to deploy the VGG16, VGG19, ResNet50, and DenseNet21 networks. 

Adadelta, ADAM, RMSprop, and SGD are the four optimization algorithms that were used to train and test 

deep transfer learning networks on the Figshare dataset. This dataset consists of 3064 T1-weighted MR 

images from 233 patients who were diagnosed with glioma (1426 images), meningioma (708 images), and 

pituitary (930 images). The images were first acquired with a resolution of 512 × 512 pixels and then 

reduced to 224 × 224 pixels, which is the input size that the transfer deep learning network can handleFour 

different transfer learning networks (VGG16, VGG19, ResNet50, DenseNet121) were used to classify three 

different types of brain cancers using MR images. To extract the most informative features, these networks 

were tested using four alternative learning algorithms: Adadelta, ADAM, RMSprop, and SGD, with 
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learning rates of 1.0, 0.0001, 0.0001, and 0.01 respectively. Each transfer learning network had a three-

layer fully connected neural network appended to the end after feature extraction. ReLU activation 

functions were present in 1024 and 512 neurons, respectively, in the first and second fully connected layers. 

The third completely linked layer, which has a Softmax activation function and as many neurons as classes, 

was used for classification. 

For every optimizer, all four approaches were tried ten times using a batch size of sixteen and 50 epochs. 

An complete training dataset is processed through the neural network once, forward and backward, to define 

an epoch. In this investigation, an epoch was completed in 134 iterations using a batch size of 16 and 2145 

training samples. First, the VGG16 transfer learning network was evaluated; the SGD optimizer produced 

the best classification score of 97.49%. Second, employing four optimizers, the VGG19 architecture was 

evaluated ten times for the classification of brain tumors; the SGD optimizer produced the best results, with 

a performance of 97.93%. As opposed to VGG16 and VGG19, the ResNet50 network produced different 

results, with the Adadelta optimizer achieving the highest performance of 99.02%. Ultimately, the 

DenseNet121 network was tested ten times and four different optimizers were applied in order to assess the 

network's ability to classify brain tumors. The Adadelta optimizer yielded the best categorization 

performance. It may be inferred that the classification performances attained using alternative optimizers 

were likewise fairly impressive. 

Srinivas, Chetana, et al. presented a comparative performance analysis of transfer learning-based CNN 

models, namely VGG-16, ResNet-50, and Inception-v3, for automatic prediction of tumor cells in the brain 

using MRI images[23]. There are 233 images of brain tumors in the dataset used in this investigation. This 

study compares the VGG-16 pretrained CNN model's performance with that of the ResNet-50 and 

Inception-v3 models in order to determine the most accurate location of brain tumors. Brain MRI images 

in a JPEG format that were gathered via Kaggle dataset used in this study. 256 unprocessed MRI images 

with different sizes expressed in terms of pixel values are included in the collection. The presence of the 

tumor in an MRI brain imaging determines whether portion of the images gets labeled as Yes or No158 of 

the 256 images show benign tumors, and the remaining 98 show malignant tumors. The dataset is divided 

into three parts in order to train, test, and validate the models. False positives and incorrect analyses may 

result from anomalies in the MRI images, such as poor image quality, distortion, inhomogeneity, 

misinterpretation, and motion heterogeneity. Options for patient care may be significantly impacted by this. 

The brain MRI images are scaled to a specified dimension of 224 × 224 × 3 in order to accommodate the 

pre-trained CNN models. The validation loss in the VGG-16 model demonstrates a stable increase of 0.95% 

at each epoch interval and tends to decrease until the final epoch, whereas both training and validation 

accuracy consistently grow up to 0.96% at each epoch interval. Of contrast, the validation accuracy of the 

Inception-v3 model is unstable while the training accuracy exhibits an increasing tendency. After the eighth 

epoch, validation accuracy increases the highest, from 0.78% in the fourth epoch to 0.86% in the eighth. 

From the second to the last epoch, the training accuracy in the ResNet50 model is consistently greater and 

stable, attaining accuracy above 0.95%.  

Ahamed, Md Atik, and Rabeya Tus Sadia explored the performance of state-of-the-art CNN models on two 

different types of datasets[24]. Images of both normal and tumor categories are included in the first dataset, 

which is binary. Images of tumors that have been diagnosed as glioma, meningioma, or pituitary are 

included in the second dataset, which is multi-class. In the trials, pre-trained weights from ImageNet were 

used for transfer learning, and the weights were initialized randomly. All of the models employed in this 

study have identical experimental environments to provide a fair comparison. 40% of the data was utilized 

for validation and 60% of the data was used for training in both datasets, which was constant across all 

models. This research utilizes two distinct datasets. The first is a binary classification dataset consisting of 

3000 samples, while the second is a multi-class comprising 3064 samples. The data processing pipeline 

comprises two steps. The first step involves data augmentation techniques such as rotation up to 20 degrees, 

as well as horizontal and vertical flips. An image flip, whether vertical or horizontal, is flipping the rows or 

columns of pixels. The images are subjected to a random flip operation. Normalization is the second phase, 

in which every image is downsized to 224 x 224 pixels, the standard 2-dimensional size. With an accuracy 

of 99.75% in the binary classification dataset, the EfficientNet-B5 architecture outperformed all other state-

of-the-art models thanks to the suggested strategies used in this study. Similar to this, the EfficientNet-B5 

architecture outperformed other models with an accuracy of 98.61% for the multi-class dataset. 
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Swati, Zar Nawab Khan, et al. employed pre-trained deep CNN models and propose a block-wise fine-

tuning strategy based on transfer learning[25]. A benchmark dataset of T1-weighted contrast-enhanced 

magnetic resonance images (CE-MRI) is used to assess the suggested approach. The CE-MRI dataset used 

in this investigation was sourced from figshare, a website that is open to the public.  As opposed to 3D 

volumes, the brain tumor classification system uses two-dimensional (2D) images or slices since, in clinical 

practice, acquired and available CE-MRI images are usually 2D slices with a significant slice gap. Thier 

2D MR image-based classification system is therefore useful for clinical settings. The dataset was gathered 

from General Hospital at Tianjin Medical University in China and Nanfang Hospital in Guangzhou, China, 

between 2005 and 2010. In all, 3064 images from 233 patients are included, representing three different 

tumor types (glioma, meningioma, and pituitary tumor) in axial, coronal, and sagittal views. The images in 

the dataset are given in matrix format, with 512 x 512 pixel sizes and 49 mm x 49 mm pixel sizes for each 

image. The CE-MR images are scaled to a range of [0, 1] using min-max normalization in order to make 

them ready for analysis. After normalization, the image is resized to 224 x 224 pixels and duplicated three 

times, resulting in three channels that match the pre-trained VGG19 model's input size. The CNN layers' 

weights are updated following each iteration during training. There are 19 layers and 144 million trainable 

parameters (weights) in the VGG19 architecture. A sizable dataset is needed for such a deep network's 

training and optimization. Overfitting could happen, though, and it becomes difficult to identify the right 

local minima for the cost function with smaller datasets. Consequently, we use the CE-MRI dataset to fine-

tune the pre-trained VGG19 model after initializing its weights. Three fully connected layers and sixteen 

convolutional layers make up the VGG19 model. 

It is necessary to fine-tune 19 layers for each of the five-fold cross-validations when using the layer-wise 

fine-tuning approach, which adds layers one at a time. This yields a total of 95 VGG19 architectures. Layer-

by-layer fine-tuning of the VGG19 architecture would take more than a week, assuming that each 

architecture takes about 30 minutes to train. Even more time-consuming would be figuring out the ideal 

parameters for the layer-wise fine-tuning technique. Using the layer-wise fine-tuning approach only 

resulted in a marginal improvement in the results. As a result, pooling layers are used to divide the VGG19 

architecture into six blocks, and block-wise fine-tuning is used in its place. 

There were initially 1000 neurons in the last fully connected layer of VGG19, which corresponded to the 

classes in the ImageNet dataset. The final fully connected layer for the CE-MRI dataset is altered to include 

three neurons, which represent the three classes in the dataset. Block by block, the deep CNN is trained. 

The last block is fine-tuned first, and all subsequent blocks (layers) are kept fixed by freezing their learning. 

In pre-trained CNNs, domain-specific features of natural images are found in later layers, while generic 

features are found in earlier layers. Because these layers contain low-level features, the learning of the 

earlier layers may become frozen. Block-wise fine-tuning is started from the top block in order to discover 

the domain-specific characteristics of MRI brain tumors. 

The suggested model's application of transfer learning and fine-tuning techniques leads to a decrease in 

overfitting and a quicker rate of convergence. This is demonstrated by our deep block-wise fine-tuned CNN 

model's accuracy and loss history, which shows consistency in training-validation accuracy and loss and 

rapidly reaches its maximum performance. An important aspect of the performance gap between shallow 

and deep fine-tuning is observed during the experiments. Low-level features are determined by the earlier 

layers of CNN, whereas domain-specific features are determined by the later layers. In computer vision 

applications, where the low-level features of the fine-tuned CNN and pre-trained CNN datasets are similar, 

shallow fine-tuning—fine-tuning only the final few fully connected layers—has produced state-of-the-art 

results. However, since the dataset contains medical brain MR images that differ from natural images, the 

CNN may find it challenging to extract pertinent features from medical brain MR images using only natural 

images if the last few layers are fine-tuned. Particularly in shallow models like FT: B6 and FT: B5-B6, this 

effect is noticeable. Deep fine-tuning is necessary to improve performance; this involves progressively 

adding more blocks to the fine-tuning process, which raises performance over time. Experimental results 

highlight the efficacy of our proposed method by showing a gradual increase in classification performance 

with incremental block-wise fine-tuning. 

 

Arbane, Mohamed, et al. proposed for accurate classification of brain tumors from MRI images using 

a convolutional neural network (CNN) based on transfer learning[26]. The system that has been developed 

looks into a number of cutting-edge CNN architectures, such as ResNet, Xception, and MobileNet-V2. The 

dataset that was used consists of 253 magnetic resonance imaging (MRI) images, of which 155 samples 

show the presence of a tumor and 98 samples do not.  The original dataset is subjected to a variety of 
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randomized transformations, including rotations, height and width shifts, brightness adjustments, and other 

techniques made possible by Keras TensorFlow's ImageDataGenerator tool, in order to increase the quantity 

of MRI images that are available for training the suggested system. The augmentation parameters are 

carefully selected to ensure that the proposed classifier is never presented with duplicate images during 

training, thereby improving generalization and mitigating the risk of overfitting. As a result of 

this augmentation process, the original dataset of 253 images is expanded to 1516 images, providing a more 

diverse and extensive dataset for training the classifier. Then, the images are resized to dimensions of 

224x224x3. This resizing operation serves to normalize the images and ensure that they are uniformly 

represented across the dataset. all convolutional neural networks are trained for 20 epochs with a batch 

size of 20. To update the neural weights based on the training data, the Adam optimization algorithm is 

utilized instead of the conventional stochastic gradient descent optimizer. The Adam optimizer employs 

a learning rate of 0.001 to optimize the model during the training process. the MobileNet-v2 architecture 

demonstrated superior performance, achieving F1-score and accuracy metrics of 98.42% and 98.24%, 

respectively. These results indicate that the MobileNet-v2 classifier is highly effective in accurately 

classifying brain tumors from MRI images, surpassing the performance of other investigated classifiers. 

 

Saxena, Priyansh, Akshat Maheshwari, and Saumil Maheshwari  introduced a transfer learning 

approach based on convolutional neural networks (CNN) for the classification of brain MRI scans into two 

distinct classes, utilizing three pre-trained models[27]. The effectiveness of these models is assessed and 

contrasted with each other in order to ascertain how well each performs in the task of classifying brain 

tumors. A set of 253 brain MRI images is used as the brain tumor detection dataset. The dataset includes 

98 samples of benign tumors and 155 samples of MRI images showing malignant tumors. This study's 

preprocessing pipeline consists of a few essential steps. To begin with, the dataset is split into three separate 

parts: the train, test, and validation sets. The validation set is used for hyper-parameter tuning and objective 

assessment of the trained model, whereas the train set is used for model fitting. The test set is used to 

conduct the model's last, objective assessment. There are 183 training images, 50 validation images, and 20 

testing images from the original dataset, which had 253 images. Crop normalization is a component of the 

preprocessing pipeline in addition to data splitting. To find the farthest north, south, east, and west (x, y) 

coordinates along a given contour, one must determine the contour's extreme points. Both rotated bounding 

boxes and raw contours can be created using this method. 

In addition, the dataset's images are resized to a predetermined format to guarantee uniformity for the pre-

trained models used in the research. As required by the pre-trained models, the input images are resized to 

224 × 224 × 3. The purpose of this resizing operation is to help the deep convolutional neural network learn 

by standardizing the images. Data augmentation techniques were used to expand the training dataset's size 

and diversity. During data augmentation, a specific rotation angle of 15° was applied to the images. By 

adding more variations of the input images to the dataset, this rotation operation helps the deep 

convolutional neural network learn and classify the input images more efficiently. 

 Several performance metrics, such as Cohen's kappa (κ), F1-score, area under the receiver operating 

characteristic (ROC) curve (AUC-ROC), and test accuracy, are used to evaluate the effectiveness of the 

suggested methodology. ResNet-50 outperformed the other two models under investigation in terms of F1-

score because of its high recall and precision values, which are added together to determine the F1-score's 

harmonic mean. Furthermore, ResNet-50 showed no false-negative rate on the test data, which qualifies it 

as a viable option for real-world uses where precise tumor identification is essentialResNet-50 had the 

largest area under the ROC curve, while Inception-V3 had the lowest. Its AUC value of 0.55 suggested that 

the latter model performed similarly to a random classifier. ResNet-50 outperformed Inception-V3 in terms 

of test accuracy, with the latter suffering from overfitting. Cohen also had the highest kappa score for 

ResNet-50 and the lowest for Inception-V3. Ultimately, a thorough analysis and comparison of the 

performance metrics reveals that ResNet-50 performs better than the other two models in correctly 

classifying brain tumors. 

Table 3 illustrates the summarized of studies exploring CNN-based deep learning approaches in brain tumor 

classification. 
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Table 3 The summarized of studies exploring CNN-based deep learning approaches in brain tumor classification. 

 

Author  Datasets Size of 

datasets 

Preprocessing Classificatio

n task 

 CNN Model  Performance 

Kaur 

and 

Gandhi 

AANLI

B 

database, 

Harvard 

Medical 

School 

160 (140 

abnormal ,20 

normal) 

resizing classification 

to normal and 

abnormal 

brain images 

VGG16 

Sensitivity, 

specificity, and 

accuracy, with 

all metrics set at 

the ideal value 

of 100%. 

Deepak, 

S., & 

Ameer, 

P. 

figshare 3064 (930 

pituitary 

tumors 

images  , 708 

meningioma

s images  , 

and 1426 

gliomas 

images)  

Normalizatio

n , resizing 

classification 

of brain 

tumors types, 

namely 

glioma, 

meningioma, 

and pituitary 

tumors 

GoogLeNet  Accuracy 

98.0±0.4% 

Rehman, 

Arshia, 

et al. 

Figshare 3064 (930 

pituitary 

tumors 

images  , 708 

meningioma

s images  , 

and 1426 

gliomas 

images) 

data 

augmentation 

classification 

of brain 

tumors types, 

namely 

glioma, 

meningioma, 

and pituitary 

tumors 

AlexNet, 

GoogLeNet, 

and 

VGGNet 

AlexNet acc 

accuracy of 

96.73% 

GoogleNet 

accuracy of 

97% 

VGG16 

acc89.76%. 

Polat, 

Özlem, 

and 

Cahfer 

Güngen 

Figshare 

dataset 

3064,glioma 

(1426 

images), 

meningioma 

(708 

images), and 

pituitary 

(930 

images). 

 ـــــــــــــــــ

classification 

of brain 

tumors types, 

namely 

glioma, 

meningioma, 

and pituitary  

VGG16, 

VGG19, 

ResNet50,  

VGG16 

97.49%. 

VGG1997.93%

. ResNet 

99.02%  

Srinivas, 

Chetana, 

et al. 

Kaggle 

dataset 

256 

unprocessed 

MRI images ـــــــــــــــــ 

classification 

to benign and 

malignant 

VGG-16, 

ResNet-50, 

and 

Inception-v3 

ResNet50 

accuracy above 

0.95%. 

Ahamed

, Md 

Atik, 

and 

Rabeya 

Tus 

Sadia 

Figshare 

dataset 

3064,glioma 

(1426 

images), 

meningioma 

(708 

images), and 

pituitary 

(930 

images). 

data 

augmentation 

first 

classification 

to timorous 

and non 

timorous 

then 

classification 

tumorours to 

glioma and 

meningioma 

and pituitary 

EfficientNet

-B5 

architecture 
accuracy of 

99.75% 
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Swati, Zar 

Nawab Khan, 

et al. 

Figshare 

dataset 

3064, glioma 

(1426 

images), 

meningioma 

(708 

images), and 

pituitary 

(930 

images). 

 ـــــــــــــــــ

classification 

tumorours to 

glioma and 

meningioma 

and pituitary 

the VGG19 

model  

Arbane, 

Mohamed, et 

al. 

Kaggle 253 

images(155t 

and 98 not) 

data 

augmentation 

classification 

tumorous and 

non tumorous 

ResNet, 

Xception, 

and 

MobileNet-

V2. 

MobileNet 

high acc 

98.24%, 

Saxena, 

Priyansh, 

Akshat 

Maheshwari, 

and Saumil 

Maheshwari   

Kaggle 253 

images(155t 

and 98 not) 

resizing, data 

augmentation 

classification 

to benign and 

malignant 

ResNet-50, 

Inception-

V3 
ResNet high 

performance 

 

 

8. Conclusion: 

Transfer learning models are a promising approach for brain tumor detection in medical imaging. 

Compared to traditional machine learning algorithms and CNNs, transfer learning models offer several 

advantages, such as improved accuracy, reduced training time, and the ability to generalize well to new 

datasets. 

Recent studies have demonstrated the effectiveness of transfer learning models in detecting brain 

tumors in MRI scans, achieving high accuracy levels even with small datasets. By leveraging pre-trained 

models that have already learned features from large datasets, transfer learning models can effectively 

extract meaningful features from MRI scans and enable accurate tumor detection. 

While CNNs and traditional machine learning algorithms have also shown promise in detecting brain 

tumors, transfer learning models offer a more efficient and effective approach for this task. Moreover, 

transfer learning models can be easily adapted to different types of imaging modalities and can be fine-

tuned on new datasets to achieve even higher accuracy levels. 
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